Epitaxy: Programmable Atom Equivalents

The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle (NP) superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous s...

Full description

Bibliographic Details
Main Authors: Wang, Mary X. (Author), Seo, Soyoung E. (Author), Fleischman, Dagny (Author), Lee, Byeongdu (Author), Kim, Youngeun (Author), Atwater, Harry A. (Author), Mirkin, Chad A. (Author), Gabrys, Paul Anthony (Contributor), Macfarlane, Robert J (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2017-10-23T18:44:01Z.
Subjects:
Online Access:Get fulltext
LEADER 02831 am a22003373u 4500
001 111961
042 |a dc 
100 1 0 |a Wang, Mary X.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Gabrys, Paul Anthony  |e contributor 
100 1 0 |a Macfarlane, Robert J  |e contributor 
700 1 0 |a Seo, Soyoung E.  |e author 
700 1 0 |a Fleischman, Dagny  |e author 
700 1 0 |a Lee, Byeongdu  |e author 
700 1 0 |a Kim, Youngeun  |e author 
700 1 0 |a Atwater, Harry A.  |e author 
700 1 0 |a Mirkin, Chad A.  |e author 
700 1 0 |a Gabrys, Paul Anthony  |e author 
700 1 0 |a Macfarlane, Robert J  |e author 
245 0 0 |a Epitaxy: Programmable Atom Equivalents 
260 |b American Chemical Society (ACS),   |c 2017-10-23T18:44:01Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/111961 
520 |a The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle (NP) superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of NP thin films. Both surface morphology and internal thin film structure are examined to provide an understanding of particle attachment and reorganization during growth. Under equilibrium conditions, single crystalline, multilayer thin films can be synthesized over 500 × 500 μm² areas on lithographically patterned templates, whereas deposition under kinetic conditions leads to the rapid growth of glassy films. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in atomic thin film deposition, allowing these processes to be understood in the context of well-studied atomic epitaxy and enabling a nanoscale model to study fundamental crystallization processes. Through understanding the role of epitaxy as a driving force for NP assembly, we are able to realize 3D architectures of arbitrary domain geometry and size. 
520 |a United States. Air Force Office of Scientific Research (AFOSR FA9550-11-1-0275) 
520 |a United States. Air Force Office of Scientific Research (FA9550-12-1-0280) 
520 |a United States. Department of Defense (N00014-15-1-0043) 
520 |a United States. Department of Energy (Grant DE-SC0000989-0002) 
520 |a National Science Foundation (U.S.) (Award DMR-1121262) 
546 |a en_US 
655 7 |a Article 
773 |t ACS Nano