On invariance and selectivity in representation learning

We study the problem of learning from data representations that are invariant to transformations, and at the same time selective, in the sense that two points have the same representation if one is the transformation of the other. The mathematical results here sharpen some of the key claims of i-the...

Full description

Bibliographic Details
Main Authors: Anselmi, Fabio (Contributor), Rosasco, Lorenzo (Contributor), Poggio, Tomaso A (Contributor)
Other Authors: Center for Brains, Minds, and Machines (Contributor)
Format: Article
Language:English
Published: Oxford University Press (OUP), 2017-11-27T14:51:43Z.
Subjects:
Online Access:Get fulltext
LEADER 01409 am a22002173u 4500
001 112284
042 |a dc 
100 1 0 |a Anselmi, Fabio  |e author 
100 1 0 |a Center for Brains, Minds, and Machines  |e contributor 
100 1 0 |a Anselmi, Fabio  |e contributor 
100 1 0 |a Rosasco, Lorenzo  |e contributor 
100 1 0 |a Poggio, Tomaso A  |e contributor 
700 1 0 |a Rosasco, Lorenzo  |e author 
700 1 0 |a Poggio, Tomaso A  |e author 
245 0 0 |a On invariance and selectivity in representation learning 
260 |b Oxford University Press (OUP),   |c 2017-11-27T14:51:43Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/112284 
520 |a We study the problem of learning from data representations that are invariant to transformations, and at the same time selective, in the sense that two points have the same representation if one is the transformation of the other. The mathematical results here sharpen some of the key claims of i-theory-a recent theory of feedforward processing in sensory cortex (Anselmi et al., 2013, Theor. Comput. Sci. and arXiv:1311.4158; Anselmi et al., 2013, Magic materials: a theory of deep hierarchical architectures for learning sensory representations. CBCL Paper; Anselmi & Poggio, 2010, Representation learning in sensory cortex: a theory. CBMM Memo No. 26). 
520 |a National Science Foundation (U.S.) (Award CCF-1231216) 
655 7 |a Article 
773 |t Information and Inference