Nucleon transverse momentum-dependent parton distributions in lattice QCD: Renormalization patterns and discretization effects

Lattice QCD calculations of transverse momentum-dependent parton distribution functions (TMDs) in nucleons are presented, based on the evaluation of nucleon matrix elements of quark bilocal operators with a staple-shaped gauge connection. Both time-reversal odd effects, namely, the generalized Siver...

Full description

Bibliographic Details
Main Authors: Yoon, Boram (Author), Engelhardt, Michael (Author), Gupta, Rajan (Author), Bhattacharya, Tanmoy (Author), Green, Jeremy R. (Author), Musch, Bernhard U. (Author), Schäfer, Andreas (Author), Syritsyn, Sergey N. (Author), Negele, John W (Contributor), Pochinsky, Andrew (Contributor)
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor), Massachusetts Institute of Technology. Laboratory for Nuclear Science (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2017-12-05T18:34:25Z.
Subjects:
Online Access:Get fulltext
LEADER 03071 am a22003493u 4500
001 112402
042 |a dc 
100 1 0 |a Yoon, Boram  |e author 
100 1 0 |a Massachusetts Institute of Technology. Center for Theoretical Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Nuclear Science  |e contributor 
100 1 0 |a Negele, John W  |e contributor 
100 1 0 |a Pochinsky, Andrew  |e contributor 
700 1 0 |a Engelhardt, Michael  |e author 
700 1 0 |a Gupta, Rajan  |e author 
700 1 0 |a Bhattacharya, Tanmoy  |e author 
700 1 0 |a Green, Jeremy R.  |e author 
700 1 0 |a Musch, Bernhard U.  |e author 
700 1 0 |a Schäfer, Andreas  |e author 
700 1 0 |a Syritsyn, Sergey N.  |e author 
700 1 0 |a Negele, John W  |e author 
700 1 0 |a Pochinsky, Andrew  |e author 
245 0 0 |a Nucleon transverse momentum-dependent parton distributions in lattice QCD: Renormalization patterns and discretization effects 
260 |b American Physical Society,   |c 2017-12-05T18:34:25Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/112402 
520 |a Lattice QCD calculations of transverse momentum-dependent parton distribution functions (TMDs) in nucleons are presented, based on the evaluation of nucleon matrix elements of quark bilocal operators with a staple-shaped gauge connection. Both time-reversal odd effects, namely, the generalized Sivers and Boer-Mulders transverse momentum shifts, as well as time-reversal even effects, namely, the generalized transversity and one of the generalized worm-gear shifts, are studied. Results are obtained on two different n[subscript f]=2+1 flavor ensembles with approximately matching pion masses but very different discretization schemes: domain-wall fermions (DWF) with lattice spacing a=0.084  fm and pion mass 297 MeV, and Wilson-clover fermions with a=0.114  fm and pion mass 317 MeV. Comparison of the results on the two ensembles yields insight into the length scales at which lattice discretization errors are small, and into the extent to which the renormalization pattern obeyed by the continuum QCD TMD operator continues to apply in the lattice formulation. For the studied TMD observables, the results are found to be consistent between the two ensembles at sufficiently large separation of the quark fields within the operator, whereas deviations are observed in the local limit and in the case of a straight link gauge connection, which is relevant to the studies of parton distribution functions. Furthermore, the lattice estimates of the generalized Sivers shift obtained here are confronted with, and are seen to tend towards, a phenomenological estimate extracted from experimental data. 
520 |a United States. Department of Energy (Grant DE-FG02-96ER40965) 
520 |a United States. Department of Energy (Grant DE-SC-0011090) 
520 |a United States. Department of Energy (Grant DE-FC02-06ER41444) 
546 |a en 
655 7 |a Article 
773 |t Physical Review D