RF wave simulation for cold edge plasmas using the MFEM library

A newly developed generic electro-magnetic (EM) simulation tool for modeling RF wave propagation in SOL plasmas is presented. The primary motivation of this development is to extend the domain partitioning approach for incorporating arbitrarily shaped SOL plasmas and antenna to the TORIC core ICRF s...

Full description

Bibliographic Details
Main Authors: Kolev, T. (Author), Stowell, M. (Author), Shiraiwa, Shunichi (Contributor), Wright, John C (Contributor), Bonoli, Paul T (Contributor)
Other Authors: Massachusetts Institute of Technology. Plasma Science and Fusion Center (Contributor)
Format: Article
Language:English
Published: EDP Sciences, 2018-01-26T15:54:41Z.
Subjects:
Online Access:Get fulltext
LEADER 02195 am a22002533u 4500
001 113307
042 |a dc 
100 1 0 |a Kolev, T.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Plasma Science and Fusion Center  |e contributor 
100 1 0 |a Shiraiwa, Shunichi  |e contributor 
100 1 0 |a Wright, John C  |e contributor 
100 1 0 |a Bonoli, Paul T  |e contributor 
700 1 0 |a Stowell, M.  |e author 
700 1 0 |a Shiraiwa, Shunichi  |e author 
700 1 0 |a Wright, John C  |e author 
700 1 0 |a Bonoli, Paul T  |e author 
245 0 0 |a RF wave simulation for cold edge plasmas using the MFEM library 
260 |b EDP Sciences,   |c 2018-01-26T15:54:41Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/113307 
520 |a A newly developed generic electro-magnetic (EM) simulation tool for modeling RF wave propagation in SOL plasmas is presented. The primary motivation of this development is to extend the domain partitioning approach for incorporating arbitrarily shaped SOL plasmas and antenna to the TORIC core ICRF solver, which was previously demonstrated in the 2D geometry [S. Shiraiwa, et. al., "HISTORIC: extending core ICRF wave simulation to include realistic SOL plasmas", Nucl. Fusion in press], to larger and more complicated simulations by including a 3D realistic antenna and integrating RF rectified sheath potential model. Such an extension requires a scalable high fidelity 3D edge plasma wave simulation. We used the MFEM [http://mfem.org] , open source scalable C++ finite element method library, and developed a Python wrapper for MFEM (PyMFEM), and then a radio frequency (RF) wave physics module in Python. This approach allows for building a physics layer rapidly, while separating the physics implementation being apart from the numerical FEM implementation. An interactive modeling interface was built on pScope [S Shiraiwa, et. al. Fusion Eng. Des. 112, 835] to work with an RF simulation model in a complicated geometry. 
520 |a United States. Department of Energy. Office of Fusion Energy Sciences (Award DE-FC02-99ER54512 ) 
520 |a United States. Department of Energy (Contract DE-FC02-01ER54648) 
655 7 |a Article 
773 |t EPJ Web of Conferences