10 nm gap bowtie plasmonic apertures fabricated by modified lift-off process

Bowtie plasmonic apertures, with gap sizes down to 11 nm and silver film thickness of up to 150 nm (aspect ratio 14:1), were fabricated on a silicon nitride membrane. Transmission spectra feature the aperture resonances ranging from 470 to 687 nm, with quality factors around 10. The mode area of the...

Full description

Bibliographic Details
Main Authors: Huang, I-Chun (Author), Holzgrafe, Jeffrey (Author), Choy, Jennifer T. (Author), Lončar, Marko (Author), Jensen, Russell Andrew (Contributor), Bawendi, Moungi G (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: American Institute of Physics (AIP), 2018-01-30T15:47:33Z.
Subjects:
Online Access:Get fulltext
LEADER 01575 am a22002413u 4500
001 113345
042 |a dc 
100 1 0 |a Huang, I-Chun  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Jensen, Russell Andrew  |e contributor 
100 1 0 |a Bawendi, Moungi G  |e contributor 
700 1 0 |a Holzgrafe, Jeffrey  |e author 
700 1 0 |a Choy, Jennifer T.  |e author 
700 1 0 |a Lončar, Marko  |e author 
700 1 0 |a Jensen, Russell Andrew  |e author 
700 1 0 |a Bawendi, Moungi G  |e author 
245 0 0 |a 10 nm gap bowtie plasmonic apertures fabricated by modified lift-off process 
260 |b American Institute of Physics (AIP),   |c 2018-01-30T15:47:33Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/113345 
520 |a Bowtie plasmonic apertures, with gap sizes down to 11 nm and silver film thickness of up to 150 nm (aspect ratio 14:1), were fabricated on a silicon nitride membrane. Transmission spectra feature the aperture resonances ranging from 470 to 687 nm, with quality factors around 10. The mode area of the smallest gap aperture is estimated to be as small as 0.002 (k/n)[superscript 2] using numerical modeling. Importantly, our fabrication technique, based on an e-beam lithography and a lift-off process, is scalable which allows fabrication of many devices in parallel over a relatively large area. We believe that the devices demonstrated in this work will find application in studying and engineering light-matter interactions. 
546 |a en_US 
655 7 |a Article 
773 |t Applied Physics Letters