Mapping and Exploring the Collagen-I Proteostasis Network

Collagen-I is the most abundant protein in the human body, yet our understanding of how the endoplasmic reticulum regulates collagen-I proteostasis (folding, quality control, and secretion) remains immature. Of particular importance, interactomic studies to map the collagen-I proteostasis network ha...

Full description

Bibliographic Details
Main Authors: DiChiara, Andrew Stephen (Contributor), Taylor, Rebecca J. (Contributor), Wong, Madeline Y. (Contributor), Doan, Ngoc Duc (Contributor), Del Rosario, Amanda M (Contributor), Shoulders, Matthew D. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2018-02-12T16:15:03Z.
Subjects:
Online Access:Get fulltext
LEADER 03326 am a22003253u 4500
001 113577
042 |a dc 
100 1 0 |a DiChiara, Andrew Stephen  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
100 1 0 |a DiChiara, Andrew Stephen  |e contributor 
100 1 0 |a Taylor, Rebecca J.  |e contributor 
100 1 0 |a Wong, Madeline Y.  |e contributor 
100 1 0 |a Doan, Ngoc Duc  |e contributor 
100 1 0 |a Del Rosario, Amanda M  |e contributor 
100 1 0 |a Shoulders, Matthew D.  |e contributor 
700 1 0 |a Taylor, Rebecca J.  |e author 
700 1 0 |a Wong, Madeline Y.  |e author 
700 1 0 |a Doan, Ngoc Duc  |e author 
700 1 0 |a Del Rosario, Amanda M  |e author 
700 1 0 |a Shoulders, Matthew D.  |e author 
245 0 0 |a Mapping and Exploring the Collagen-I Proteostasis Network 
260 |b American Chemical Society (ACS),   |c 2018-02-12T16:15:03Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/113577 
520 |a Collagen-I is the most abundant protein in the human body, yet our understanding of how the endoplasmic reticulum regulates collagen-I proteostasis (folding, quality control, and secretion) remains immature. Of particular importance, interactomic studies to map the collagen-I proteostasis network have never been performed. Such studies would provide insight into mechanisms of collagen-I folding and misfolding in cells, an area that is particularly important owing to the prominence of the collagen misfolding-related diseases. Here, we overcome key roadblocks to progress in this area by generating stable fibrosarcoma cells that inducibly express properly folded and modified collagen-I strands tagged with distinctive antibody epitopes. Selective immunoprecipitation of collagen-I from these cells integrated with quantitative mass spectrometry-based proteomics permits the first mapping of the collagen-I proteostasis network. Biochemical validation of the resulting map leads to the assignment of numerous new players in collagen-I proteostasis, and the unanticipated discovery of apparent aspartyl-hydroxylation as a new post-translational modification in the N-propeptide of collagen-I. Furthermore, quantitative analyses reveal that Erp29, an abundant endoplasmic reticulum proteostasis machinery component with few known functions, plays a key role in collagen-I retention under ascorbate-deficient conditions. In summary, the work here provides fresh insights into the molecular mechanisms of collagen-I proteostasis, y ielding a detailed roadmap for future investigations. Straightforward adaptations of the cellular platform developed will also enable hypothesis-driven, comparative research on the likely distinctive proteostasis mechanisms engaged by normal and disease-causing, misfolding collagen-I variants, potentially motivating new therapeutic strategies for currently incurable collagenopathies. 
520 |a National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant 1R03AR067503) 
520 |a National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant 1F31AR067615) 
520 |a National Institute of Environmental Health Sciences (Grant P30-ES002109) 
655 7 |a Article 
773 |t ACS Chemical Biology