Approaching the ideal elastic strain limit in silicon nanowires

Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid-grown single-crystalline Si nanowires with diameters of ~1...

Full description

Bibliographic Details
Main Authors: Zhang, H. (Author), Tersoff, J. (Author), Xu, S. (Author), Chen, H. (Author), Zhang, Q. (Author), Zhang, K. (Author), Yang, Y. (Author), Lee, C.-S (Author), Tu, K.-N (Author), Lu, Y. (Author), Li, James (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Department of Nuclear Science and Engineering (Contributor)
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS), 2018-02-15T16:11:13Z.
Subjects:
Online Access:Get fulltext
LEADER 02133 am a22002893u 4500
001 113684
042 |a dc 
100 1 0 |a Zhang, H.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Nuclear Science and Engineering  |e contributor 
100 1 0 |a Li, James  |e contributor 
700 1 0 |a Tersoff, J.  |e author 
700 1 0 |a Xu, S.  |e author 
700 1 0 |a Chen, H.  |e author 
700 1 0 |a Zhang, Q.  |e author 
700 1 0 |a Zhang, K.  |e author 
700 1 0 |a Yang, Y.  |e author 
700 1 0 |a Lee, C.-S.  |e author 
700 1 0 |a Tu, K.-N.  |e author 
700 1 0 |a Lu, Y.  |e author 
700 1 0 |a Li, James  |e author 
245 0 0 |a Approaching the ideal elastic strain limit in silicon nanowires 
260 |b American Association for the Advancement of Science (AAAS),   |c 2018-02-15T16:11:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/113684 
520 |a Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid-grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this "deep ultra-strength" for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising "elastic strain engineering" applications. 
655 7 |a Article 
773 |t Science Advances