Viscous entrainment on hairy surfaces

Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces a...

Full description

Bibliographic Details
Main Authors: Nasto, Alice Meite (Contributor), Brun, P.-T (Contributor), Hosoi, Anette E (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-03-23T17:41:14Z.
Subjects:
Online Access:Get fulltext
LEADER 01628 am a22002413u 4500
001 114268
042 |a dc 
100 1 0 |a Nasto, Alice Meite  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Nasto, Alice Meite  |e contributor 
100 1 0 |a Brun, P.-T.  |e contributor 
100 1 0 |a Hosoi, Anette E  |e contributor 
700 1 0 |a Brun, P.-T.  |e author 
700 1 0 |a Hosoi, Anette E  |e author 
245 0 0 |a Viscous entrainment on hairy surfaces 
260 |b American Physical Society,   |c 2018-03-23T17:41:14Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/114268 
520 |a Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake. 
520 |a United States. Army Research Office (Grant ARO W911NF-15-1-0166) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review Fluids