Ferromagnetic transition in a one-dimensional spin-orbit-coupled metal and its mapping to a critical point in smectic liquid crystals

We study the quantum phase transition between a paramagnetic and ferromagnetic metal in the presence of Rashba spin-orbit coupling in one dimension. Using bosonization, we analyze the transition by means of renormalization group, controlled by an ɛ expansion around the upper critical dimension of tw...

Full description

Bibliographic Details
Main Authors: Radzihovsky, Leo (Author), Kozii, Vladyslav (Contributor), Ruhman, Yehonatan (Contributor), Fu, Liang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-04-03T19:16:50Z.
Subjects:
Online Access:Get fulltext
LEADER 01664 am a22002413u 4500
001 114526
042 |a dc 
100 1 0 |a Radzihovsky, Leo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Kozii, Vladyslav  |e contributor 
100 1 0 |a Ruhman, Yehonatan  |e contributor 
100 1 0 |a Fu, Liang  |e contributor 
700 1 0 |a Kozii, Vladyslav  |e author 
700 1 0 |a Ruhman, Yehonatan  |e author 
700 1 0 |a Fu, Liang  |e author 
245 0 0 |a Ferromagnetic transition in a one-dimensional spin-orbit-coupled metal and its mapping to a critical point in smectic liquid crystals 
260 |b American Physical Society,   |c 2018-04-03T19:16:50Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/114526 
520 |a We study the quantum phase transition between a paramagnetic and ferromagnetic metal in the presence of Rashba spin-orbit coupling in one dimension. Using bosonization, we analyze the transition by means of renormalization group, controlled by an ɛ expansion around the upper critical dimension of two. We show that the presence of Rashba spin-orbit coupling allows for a new nonlinear term in the bosonized action, which generically leads to a fluctuation driven first-order transition. We further demonstrate that the Euclidean action of this system maps onto a classical smectic-A-C phase transition in a magnetic field in two dimensions. We show that the smectic transition is second order and is controlled by a new critical point. 
520 |a United States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0010526) 
546 |a en 
655 7 |a Article 
773 |t Physical Review B