Three Colors Suffice: Conflict-Free Coloring of Planar Graphs

A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v's neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and...

Full description

Bibliographic Details
Main Authors: Abel, Zachary (Author), Alvarez, Victor (Author), Demaine, Erik D. (Author), Fekete, Sándor P. (Author), Gour, Aman (Author), Hesterberg, Adam (Author), Keldenich, Phillip (Author), Scheffer, Christian (Author)
Format: Article
Language:English
Published: 2018-04-17T19:40:12Z.
Subjects:
Online Access:Get fulltext
Description
Summary:A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v's neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number x[subscript CF](G) (the smallest k for which conflict-free k-colorings exist), with a focus on planar graphs. For general graphs, we prove the conflict-free variant of the famous Hadwiger Conjecture: If G does not contain K[subscript k+1] as a minor, then x[subscript CF](G) < k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. In addition, we give a complete characterization of the algorithmic/computational complexity of conflict-free coloring. It is NP-complete to decide whether a planar graph has a conflict-free coloring with one color, while for outer- planar graphs, this can be decided in polynomial time. Furthermore, it is NP-complete to decide whether a planar graph has a conflict-free coloring with two colors, while for outerplanar graphs, two colors always suffice. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs.
Deutsche Forschungsgemeinschaft (FOR 1800)