Inference and Evolutionary Analysis of Genome-Scale Regulatory Networks in Large Phylogenies

Changes in transcriptional regulatory networks can significantly contribute to species evolution and adaptation. However, identification of genome-scale regulatory networks is an open challenge, especially in non-model organisms. Here, we introduce multi-species regulatory network learning (MRTLE),...

Full description

Bibliographic Details
Main Authors: Koch, Christopher (Author), Konieczka, Jay (Author), Delorey, Toni (Author), Socha, Amanda (Author), Davis, Kathleen (Author), Knaack, Sara A. (Author), Thompson, Dawn (Author), O'Shea, Erin K. (Author), Regev, Aviv (Author), Roy, Sushmita (Author), Lyons, Ana M. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biology (Contributor)
Format: Article
Language:English
Published: Elsevier, 2018-07-02T20:01:10Z.
Subjects:
Online Access:Get fulltext
LEADER 02473 am a22003133u 4500
001 116736
042 |a dc 
100 1 0 |a Koch, Christopher  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Lyons, Ana M.  |e contributor 
700 1 0 |a Konieczka, Jay  |e author 
700 1 0 |a Delorey, Toni  |e author 
700 1 0 |a Socha, Amanda  |e author 
700 1 0 |a Davis, Kathleen  |e author 
700 1 0 |a Knaack, Sara A.  |e author 
700 1 0 |a Thompson, Dawn  |e author 
700 1 0 |a O'Shea, Erin K.  |e author 
700 1 0 |a Regev, Aviv  |e author 
700 1 0 |a Roy, Sushmita  |e author 
700 1 0 |a Lyons, Ana M.  |e author 
245 0 0 |a Inference and Evolutionary Analysis of Genome-Scale Regulatory Networks in Large Phylogenies 
260 |b Elsevier,   |c 2018-07-02T20:01:10Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/116736 
520 |a Changes in transcriptional regulatory networks can significantly contribute to species evolution and adaptation. However, identification of genome-scale regulatory networks is an open challenge, especially in non-model organisms. Here, we introduce multi-species regulatory network learning (MRTLE), a computational approach that uses phylogenetic structure, sequence-specific motifs, and transcriptomic data, to infer the regulatory networks in different species. Using simulated data from known networks and transcriptomic data from six divergent yeasts, we demonstrate that MRTLE predicts networks with greater accuracy than existing methods because it incorporates phylogenetic information. We used MRTLE to infer the structure of the transcriptional networks that control the osmotic stress responses of divergent, non-model yeast species and then validated our predictions experimentally. Interrogating these networks reveals that gene duplication promotes network divergence across evolution. Taken together, our approach facilitates study of regulatory network evolutionary dynamics across multiple poorly studied species. Keywords: regulatory networks; network inference; evolution of gene regulatory networks; evolution of stress response; yeast; probabilistic graphical model; phylogeny; comparative functional genomics 
520 |a National Science Foundation (U.S.) (Grant DBI-1350677) 
520 |a National Institutes of Health (U.S.) (Grant R01CA119176-01) 
520 |a National Institutes of Health (U.S.) (Grant DP1OD003958-01) 
655 7 |a Article 
773 |t Cell Systems