Itinerant quantum critical point with frustration and a non-Fermi liquid

Employing the self-learning quantum Monte Carlo algorithm, we investigate the frustrated transverse-field triangle-lattice Ising model coupled to a Fermi surface. Without fermions, the spin degrees of freedom undergo a second-order quantum phase transition between paramagnetic and clock-ordered phas...

Full description

Bibliographic Details
Main Authors: Liu, Zi Hong (Author), Xu, Xiao Yan (Author), Qi, Yang (Contributor), Sun, Kai (Author), Meng, Zi Yang (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-07-26T14:02:37Z.
Subjects:
Online Access:Get fulltext
LEADER 01556 am a22002173u 4500
001 117131
042 |a dc 
100 1 0 |a Liu, Zi Hong  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Qi, Yang  |e contributor 
700 1 0 |a Xu, Xiao Yan  |e author 
700 1 0 |a Qi, Yang  |e author 
700 1 0 |a Sun, Kai  |e author 
700 1 0 |a Meng, Zi Yang  |e author 
245 0 0 |a Itinerant quantum critical point with frustration and a non-Fermi liquid 
260 |b American Physical Society,   |c 2018-07-26T14:02:37Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/117131 
520 |a Employing the self-learning quantum Monte Carlo algorithm, we investigate the frustrated transverse-field triangle-lattice Ising model coupled to a Fermi surface. Without fermions, the spin degrees of freedom undergo a second-order quantum phase transition between paramagnetic and clock-ordered phases. This quantum critical point (QCP) has an emergent U(1) symmetry and thus belongs to the (2+1)D XY universality class. In the presence of fermions, spin fluctuations introduce effective interactions among fermions and distort the bare Fermi surface towards an interacting one with hot spots and Fermi pockets. Near the QCP, non-Fermi-liquid behaviors are observed at the hot spots, and the QCP is rendered into a different universality with Hertz-Millis-type exponents. The detailed properties of this QCP and possibly related experimental systems are also discussed. 
546 |a en 
655 7 |a Article 
773 |t Physical Review B