Sub-nanometre channels embedded in two-dimensional materials

Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling. Thus far, atomically thin p-n junctions, metal-semiconductor contacts, and metal-insulator b...

Full description

Bibliographic Details
Main Authors: Han, Yimo (Author), Li, Ming-Yang (Author), Marsalis, Mark A. (Author), Li, Lain-Jong (Author), Muller, David A. (Author), Jung, Gang Seob (Contributor), Qin, Zhao (Contributor), Buehler, Markus J (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Civil and Environmental Engineering (Contributor)
Format: Article
Language:English
Published: Springer Nature, 2018-07-27T17:31:27Z.
Subjects:
Online Access:Get fulltext
LEADER 02279 am a22002893u 4500
001 117163
042 |a dc 
100 1 0 |a Han, Yimo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Civil and Environmental Engineering  |e contributor 
100 1 0 |a Jung, Gang Seob  |e contributor 
100 1 0 |a Qin, Zhao  |e contributor 
100 1 0 |a Buehler, Markus J  |e contributor 
700 1 0 |a Li, Ming-Yang  |e author 
700 1 0 |a Marsalis, Mark A.  |e author 
700 1 0 |a Li, Lain-Jong  |e author 
700 1 0 |a Muller, David A.  |e author 
700 1 0 |a Jung, Gang Seob  |e author 
700 1 0 |a Qin, Zhao  |e author 
700 1 0 |a Buehler, Markus J  |e author 
245 0 0 |a Sub-nanometre channels embedded in two-dimensional materials 
260 |b Springer Nature,   |c 2018-07-27T17:31:27Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/117163 
520 |a Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling. Thus far, atomically thin p-n junctions, metal-semiconductor contacts, and metal-insulator barriers have been demonstrated. Although 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions is also necessary. Here, we report the direct synthesis of sub-nanometre-wide one-dimensional (1D) MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalysed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Using molecular dynamics simulations, we have identified other combinations of 2D materials where 1D channels can also be formed. The electronic band structure of these 1D channels offers the promise of carrier confinement in a direct-gap material and the charge separation needed to access the ultimate length scales necessary for future electronic applications. 
520 |a United States. Office of Naval Research ((Grant N00014-16-1-233) 
520 |a United States. Office of Naval Research (Grant FA9550-15-1-0514) 
655 7 |a Article 
773 |t Nature Materials