Anisotropic (2+1)d growth and Gaussian limits of q-Whittaker processes

Abstract We consider a discrete model for anisotropic (2 + 1)-dimensional growth of an interface height function. Owing to a connection with q-Whittaker functions, this system enjoys many explicit integral formulas. By considering certain Gaussian stochastic differential equation limits of the model...

Full description

Bibliographic Details
Main Authors: Corwin, Ivan (Author), Ferrari, Patrik L. (Author), Borodin, Alexei (Contributor)
Format: Article
Language:English
Published: Springer Berlin Heidelberg, 2018-10-18T17:00:04Z.
Subjects:
Online Access:Get fulltext
LEADER 01774 am a22002653u 4500
001 118607
042 |a dc 
100 1 0 |a Corwin, Ivan  |e author 
100 1 0 |a Borodin, Alexei  |e contributor 
700 1 0 |a Ferrari, Patrik L.  |e author 
700 1 0 |a Borodin, Alexei  |e author 
245 0 0 |a Anisotropic (2+1)d growth and Gaussian limits of q-Whittaker processes 
260 |b Springer Berlin Heidelberg,   |c 2018-10-18T17:00:04Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/118607 
520 |a Abstract We consider a discrete model for anisotropic (2 + 1)-dimensional growth of an interface height function. Owing to a connection with q-Whittaker functions, this system enjoys many explicit integral formulas. By considering certain Gaussian stochastic differential equation limits of the model we are able to prove a space-time limit of covariances to those of the (2 + 1)-dimensional additive stochastic heat equation (or Edwards-Wilkinson equation) along characteristic directions. In particular, the bulk height function converges to the Gaussian free field which evolves according to this stochastic PDE. Keywords: 2+1 growth models, KPZ universality class, q-Whittaker processes, Gaussian Free Field, Space-time process 
520 |a Galileo Galilei Institute for Theoretical Physics (Arcetri, Italy) 
520 |a Kavli Institute for Theoretical Physics 
520 |a National Science Foundation (U.S.) (Grant PHY-1125915) 
520 |a National Science Foundation (U.S.) (Grant DMS-1056390) 
520 |a National Science Foundation (U.S.) (Grant DMS-1607901) 
520 |a Simons Foundation. Postdoctoral Fellowship 
520 |a Radcliffe Institute for Advanced Study (Fellowship) 
546 |a en 
655 7 |a Article 
773 |t Probability Theory and Related Fields