Quantum Hopfield neural network

Quantum computing allows for the potential of significant advancements in both the speed and the capacity of widely used machine learning techniques. Here we employ quantum algorithms for the Hopfield network, which can be used for pattern recognition, reconstruction, and optimization as a realizati...

Full description

Bibliographic Details
Main Authors: Rebentrost, Patrick (Author), Bromley, Thomas R. (Author), Weedbrook, Christian (Contributor), Lloyd, Seth (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor), Massachusetts Institute of Technology. Institute for Data, Systems, and Society (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-11-05T18:31:11Z.
Subjects:
Online Access:Get fulltext
LEADER 01789 am a22002533u 4500
001 118886
042 |a dc 
100 1 0 |a Rebentrost, Patrick  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Institute for Data, Systems, and Society  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Weedbrook, Christian  |e contributor 
100 1 0 |a Lloyd, Seth  |e contributor 
700 1 0 |a Bromley, Thomas R.  |e author 
700 1 0 |a Weedbrook, Christian  |e author 
700 1 0 |a Lloyd, Seth  |e author 
245 0 0 |a Quantum Hopfield neural network 
260 |b American Physical Society,   |c 2018-11-05T18:31:11Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/118886 
520 |a Quantum computing allows for the potential of significant advancements in both the speed and the capacity of widely used machine learning techniques. Here we employ quantum algorithms for the Hopfield network, which can be used for pattern recognition, reconstruction, and optimization as a realization of a content-addressable memory system. We show that an exponentially large network can be stored in a polynomial number of quantum bits by encoding the network into the amplitudes of quantum states. By introducing a classical technique for operating the Hopfield network, we can leverage quantum algorithms to obtain a quantum computational complexity that is logarithmic in the dimension of the data. We also present an application of our method as a genetic sequence recognizer. 
546 |a en 
655 7 |a Article 
773 |t Physical review A