A PI degree theorem for quantum deformations

We prove that if a filtered quantization A of a finitely generated commutative domain over a field k is a PI algebra, then A is commutative if char(k) = 0, and its PI degree is a power of p if char(k) = p.

Bibliographic Details
Main Author: Etingof, Pavel I (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier BV, 2018-12-04T15:57:35Z.
Subjects:
Online Access:Get fulltext
LEADER 00777 am a22001693u 4500
001 119410
042 |a dc 
100 1 0 |a Etingof, Pavel I  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Etingof, Pavel I  |e contributor 
245 0 0 |a A PI degree theorem for quantum deformations 
260 |b Elsevier BV,   |c 2018-12-04T15:57:35Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/119410 
520 |a We prove that if a filtered quantization A of a finitely generated commutative domain over a field k is a PI algebra, then A is commutative if char(k) = 0, and its PI degree is a power of p if char(k) = p. 
520 |a National Science Foundation (U.S.) (Grant DMS-1502244) 
655 7 |a Article 
773 |t Journal of Algebra