Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green

Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence ima...

Full description

Bibliographic Details
Main Authors: Askoxylakis, Vasileios (Author), Datta, Meenal (Author), Fukumura, Dai (Author), Jain, Rakesh K. (Author), Carr, Jessica Ann (Contributor), Franke, Daniel (Contributor), Caram, Justin R (Contributor), Perkinson, Collin Fisher (Contributor), Saif, Mari (Contributor), Bawendi, Moungi G (Contributor), Bruns, Oliver Thomas (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: National Academy of Sciences (U.S.), 2018-12-05T16:48:57Z.
Subjects:
Online Access:Get fulltext
LEADER 03329 am a22003613u 4500
001 119450
042 |a dc 
100 1 0 |a Askoxylakis, Vasileios  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Carr, Jessica Ann  |e contributor 
100 1 0 |a Franke, Daniel  |e contributor 
100 1 0 |a Caram, Justin R  |e contributor 
100 1 0 |a Perkinson, Collin Fisher  |e contributor 
100 1 0 |a Saif, Mari  |e contributor 
100 1 0 |a Bawendi, Moungi G  |e contributor 
100 1 0 |a Bruns, Oliver Thomas  |e contributor 
700 1 0 |a Datta, Meenal  |e author 
700 1 0 |a Fukumura, Dai  |e author 
700 1 0 |a Jain, Rakesh K.  |e author 
700 1 0 |a Carr, Jessica Ann  |e author 
700 1 0 |a Franke, Daniel  |e author 
700 1 0 |a Caram, Justin R  |e author 
700 1 0 |a Perkinson, Collin Fisher  |e author 
700 1 0 |a Saif, Mari  |e author 
700 1 0 |a Bawendi, Moungi G  |e author 
700 1 0 |a Bruns, Oliver Thomas  |e author 
245 0 0 |a Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green 
260 |b National Academy of Sciences (U.S.),   |c 2018-12-05T16:48:57Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/119450 
520 |a Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood. Keywords: shortwave infrared; biomedical imaging; fluorescence imaging green; near infrared; indocyanine 
520 |a United States. Department of Energy. Office of Basic Energy Sciences (Award DE-FG02-07ER46454) 
655 7 |a Article 
773 |t Proceedings of the National Academy of Sciences