Measuring Regularity of Individual Travel Patterns
Regularity is an important property of individual travel behavior, and the ability to measure it enables advances in behavior modeling, mobility prediction, and customer analytics. In this paper, we propose a methodology to measure travel behavior regularity based on the order in which trips or acti...
Main Authors: | , , , |
---|---|
Other Authors: | , |
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers (IEEE),
2019-03-11T13:36:42Z.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | Regularity is an important property of individual travel behavior, and the ability to measure it enables advances in behavior modeling, mobility prediction, and customer analytics. In this paper, we propose a methodology to measure travel behavior regularity based on the order in which trips or activities are organized. We represent individuals' travel over multiple days as sequences of 'travel events' - discrete and repeatable behavior units explicitly defined based on the research question and the available data. We then present a metric of regularity based on entropy rate, which is sensitive to both the frequency of travel events and the order in which they occur. The methodology is demonstrated using a large sample of pseudonymised transit smart card transaction records from London, U.K. The entropy rate is estimated with a procedure based on the Burrows-Wheeler transform. The results confirm that the order of travel events is an essential component of regularity in travel behavior. They also demonstrate that the proposed measure of regularity captures both conventional patterns and atypical routine patterns that are regular but not matched to the 9-to-5 working day or working week. Unlike existing measures of regularity, our approach is agnostic to calendar definitions and makes no assumptions regarding periodicity of travel behavior. The proposed methodology is flexible and can be adapted to study other aspects of individual mobility using different data sources. Transport for London (Organization) |
---|