Expansion microscopy: enabling single cell analysis in intact biological systems

There is a need for single cell analysis methods that enable the identification and localization of different kinds of biomolecules throughout cells and intact tissues, thereby allowing characterization and classification of individual cells and their relationships to each other within intact system...

Full description

Bibliographic Details
Main Authors: Alon, Shahar (Author), Huynh, Grace H. (Author), Boyden, Edward S. (Author)
Other Authors: Massachusetts Institute of Technology. Media Laboratory (Contributor), McGovern Institute for Brain Research at MIT (Contributor), Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor)
Format: Article
Language:English
Published: Wiley, 2020-04-14T19:49:45Z.
Subjects:
Online Access:Get fulltext
LEADER 02033 am a22003133u 4500
001 124633
042 |a dc 
100 1 0 |a Alon, Shahar  |e author 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a McGovern Institute for Brain Research at MIT  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
700 1 0 |a Huynh, Grace H.  |e author 
700 1 0 |a Boyden, Edward S.  |e author 
245 0 0 |a Expansion microscopy: enabling single cell analysis in intact biological systems 
260 |b Wiley,   |c 2020-04-14T19:49:45Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/124633 
520 |a There is a need for single cell analysis methods that enable the identification and localization of different kinds of biomolecules throughout cells and intact tissues, thereby allowing characterization and classification of individual cells and their relationships to each other within intact systems. Expansion microscopy (ExM) is a technology that physically magnifies tissues in an isotropic way, thereby achieving super-resolution microscopy on diffraction-limited microscopes, enabling rapid image acquisition and large field of view. As a result, ExM is well-positioned to integrate molecular content and cellular morphology, with the spatial precision sufficient to resolve individual biological building blocks, and the scale and accessibility required to deploy over extended 3-D objects like tissues and organs. ©2019 
520 |a IARPA (grant no. D16PC00008) 
520 |a NIH (grant no. 1R01MH103910) 
520 |a NIH (grant no. 1RM1HG008525) 
520 |a NIH (grant no. 1R01MH110932) 
520 |a NIH (grant no. 1R01EB024261) 
520 |a NIH (grant no. 1R01NS102727) 
520 |a U.S. Army Research Office (grant no. W911NF1510548) 
546 |a en 
655 7 |a Article 
773 |t 10.1111/febs.14597 
773 |t FEBS journal