Probing buried recombination pathways in perovskite structures using 3D photoluminescence tomography

Perovskite solar cells and light-emission devices are yet to achieve their full potential owing in part to microscale inhomogeneities and defects that act as non-radiative loss pathways. These sites have been revealed using local photoluminescence mapping techniques but the short absorption depth of...

Full description

Bibliographic Details
Main Authors: Stavrakas, Camille (Author), Zhumekenov, Ayan A. (Author), Brenes, Roberto (Author), Abdi-Jalebi, Mojtaba (Author), Bulović, Vladimir (Author), Bakr, Osman M. (Author), Barnard, Edward S. (Author), Stranks, Samuel D. (Author)
Other Authors: Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: Royal Society of Chemistry (RSC), 2020-04-17T13:18:17Z.
Subjects:
Online Access:Get fulltext
LEADER 02614 am a22003013u 4500
001 124712
042 |a dc 
100 1 0 |a Stavrakas, Camille  |e author 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
700 1 0 |a Zhumekenov, Ayan A.  |e author 
700 1 0 |a Brenes, Roberto  |e author 
700 1 0 |a Abdi-Jalebi, Mojtaba  |e author 
700 1 0 |a Bulović, Vladimir  |e author 
700 1 0 |a Bakr, Osman M.  |e author 
700 1 0 |a Barnard, Edward S.  |e author 
700 1 0 |a Stranks, Samuel D.  |e author 
245 0 0 |a Probing buried recombination pathways in perovskite structures using 3D photoluminescence tomography 
260 |b Royal Society of Chemistry (RSC),   |c 2020-04-17T13:18:17Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/124712 
520 |a Perovskite solar cells and light-emission devices are yet to achieve their full potential owing in part to microscale inhomogeneities and defects that act as non-radiative loss pathways. These sites have been revealed using local photoluminescence mapping techniques but the short absorption depth of photons with energies above the bandgap means that conventional one-photon excitation primarily probes the surface recombination. Here, we use two-photon time-resolved confocal photoluminescence microscopy to explore the surface and bulk recombination properties of methylammonium lead halide perovskite structures. By acquiring 2D maps at different depths, we form 3D photoluminescence tomography images to visualise the charge carrier recombination kinetics. The technique unveils buried recombination pathways in both thin film and micro-crystal structures that aren't captured in conventional one-photon mapping experiments. Specifically, we reveal that light-induced passivation approaches are primarily surface-sensitive and that nominal single crystals still contain heterogeneous defects that impact charge-carrier recombination. Our work opens a new route to sensitively probe defects and associated non-radiative processes in perovskites, highlighting additional loss pathways in these materials that will need to be addressed through improved sample processing or passivation treatments. ©2018 The Royal Society of Chemistry. 
520 |a DOE (Contract: DE-AC02-05CH11231) 
520 |a EU Seventh Framework Programme REA (grant: PIOF-GA-2013-622630) 
520 |a EU Horizon 2020 research and innovation programme (grant: 756962) 
520 |a Royal Society and Tata Group (UF150033) 
546 |a en 
655 7 |a Article 
773 |t 10.1039/C8EE00928G 
773 |t Energy & Environmental Science