Size-dependent phase morphologies in LiFePO4 battery particles

Lithium iron phosphate (LiFePO4) is the prototypical two-phase battery material whose complex patterns of lithium ion intercalation provide a testing ground for theories of electrochemical thermodynamics. Using a depth-averaged (a-b plane) phase-field model of coherent phase separation driven by Far...

Full description

Bibliographic Details
Main Authors: Cogswell, Daniel Aaron (Author), Bazant, Martin Z (Author)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier BV, 2020-07-30T02:47:12Z.
Subjects:
Online Access:Get fulltext
LEADER 01454 am a22001813u 4500
001 126447
042 |a dc 
100 1 0 |a Cogswell, Daniel Aaron  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
700 1 0 |a Bazant, Martin Z  |e author 
245 0 0 |a Size-dependent phase morphologies in LiFePO4 battery particles 
260 |b Elsevier BV,   |c 2020-07-30T02:47:12Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/126447 
520 |a Lithium iron phosphate (LiFePO4) is the prototypical two-phase battery material whose complex patterns of lithium ion intercalation provide a testing ground for theories of electrochemical thermodynamics. Using a depth-averaged (a-b plane) phase-field model of coherent phase separation driven by Faradaic reactions, we reconcile conflicting experimental observations of diamond-like phase patterns in micron-sized platelets with observations of surface-controlled patterns in nanoparticles. Elastic analysis predicts this morphological transition for particles whose a-axis dimension exceeds twice the bulk elastic stripe period. We also simulate a rich variety of non-equilibrium patterns, influenced by size-dependent spinodal points and electro-autocatalytic control of thermodynamic stability. 
546 |a en 
655 7 |a Article 
773 |t Electrochemistry Communications