Uncoupled isotonic regression via minimum Wasserstein deconvolution

Isotonic regression is a standard problem in shape-constrainedestimation where the goal is to estimate an unknown nondecreasingregression functionffrom independent pairs (xi,yi) whereE[yi] =f(xi),i= 1,...n. While this problem is well understood both statis-tically and computationally, much less is k...

Full description

Bibliographic Details
Main Authors: Rigollet, Philippe (Author), Weed, Jonathan (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Oxford University Press (OUP), 2020-08-21T13:00:11Z.
Subjects:
Online Access:Get fulltext
LEADER 01676 am a22002293u 4500
001 126717
042 |a dc 
100 1 0 |a Rigollet, Philippe  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
700 1 0 |a Weed, Jonathan  |e author 
245 0 0 |a Uncoupled isotonic regression via minimum Wasserstein deconvolution 
260 |b Oxford University Press (OUP),   |c 2020-08-21T13:00:11Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/126717 
520 |a Isotonic regression is a standard problem in shape-constrainedestimation where the goal is to estimate an unknown nondecreasingregression functionffrom independent pairs (xi,yi) whereE[yi] =f(xi),i= 1,...n. While this problem is well understood both statis-tically and computationally, much less is known about its uncoupledcounterpart where one is given only the unordered sets{x1,...,xn}and{y1,...,yn}. In this work, we leverage tools from optimal trans-port theory to derive minimax rates under weak moments conditionsonyiand to give an efficient algorithm achieving optimal rates. Bothupper and lower bounds employ moment-matching arguments that arealso pertinent to learning mixtures of distributions and deconvolution. 
520 |a National Science Foundation (U.S.) (Grants DMS-1712596, DMS-TRIPODS-1740751) 
520 |a United States. Office of Naval Research (Grant 00014-17-1-2147) 
520 |a Chan Zuckerberg Initiative Donor-Advised Fund (DAF) (2018-182642) 
520 |a National Science Foundation (U.S.). Graduate Research Fellowship (DGE-1122374) 
546 |a en 
655 7 |a Article 
773 |t 10.1093/IMAIAI/IAZ006 
773 |t Information and Inference