Osteophilic Multilayer Coatings for Accelerated Bone Tissue Growth

Osteophilic modular nanostructured multilayers containing hydroxyapatite nanoparticles complexed with a natural polymer chitosan create an osteoconductive surface for mesenchymal stem cells (MSCs). Coupled with the sustained release of physiological amounts of osteoinductive bone morphogenetic prote...

Full description

Bibliographic Details
Main Authors: Shah, Nisarg J. (Author), Hong, Jinkee (Author), Hyder, Md Nasim (Author), Hammond, Paula T (Author)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor)
Format: Article
Language:English
Published: Wiley, 2020-09-09T20:13:40Z.
Subjects:
Online Access:Get fulltext
LEADER 01570 am a22002533u 4500
001 127222
042 |a dc 
100 1 0 |a Shah, Nisarg J.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
700 1 0 |a Hong, Jinkee  |e author 
700 1 0 |a Hyder, Md Nasim  |e author 
700 1 0 |a Hammond, Paula T  |e author 
245 0 0 |a Osteophilic Multilayer Coatings for Accelerated Bone Tissue Growth 
260 |b Wiley,   |c 2020-09-09T20:13:40Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/127222 
520 |a Osteophilic modular nanostructured multilayers containing hydroxyapatite nanoparticles complexed with a natural polymer chitosan create an osteoconductive surface for mesenchymal stem cells (MSCs). Coupled with the sustained release of physiological amounts of osteoinductive bone morphogenetic protein over several days from degradable poly(β-amino ester) based multilayers, this single coating results in a synergistic accelerated and upregulated differentiation of MSCs into osteoblasts laying down new bone tissue on orthopedic implants. Copyright ©2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a NIH-NIA (5R01AG029601-04) 
520 |a U.S. Army Research Office (contract no. W911NF-07-D-0004) 
520 |a NCI grant (2P30CA014051-39) 
546 |a en 
655 7 |a Article 
773 |t Advanced Materials