Design, Development, and Validation of an Intra-Osseous Needle Placement Guide

Intra-osseous (IO) needles are an easy and reliable alternative to intravenous (IV) access in the prehospital and emergency settings for treating patients in shock. The advantage of utilizing an IO is that secure, noncollapsible peripheral venous access can be obtained rapidly in critically ill pati...

Full description

Bibliographic Details
Main Authors: Slocum, Alexander H (Author), Reinitz, Steven D. (Author), Jariwala, Shailly H. (Author), Van Citters, Douglas W. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: ASME International, 2020-11-24T16:32:49Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Intra-osseous (IO) needles are an easy and reliable alternative to intravenous (IV) access in the prehospital and emergency settings for treating patients in shock. The advantage of utilizing an IO is that secure, noncollapsible peripheral venous access can be obtained rapidly in critically ill patients. Placement of IO needles in the proximal tibia, humerus, or sternum, however, requires knowledge of human anatomy and the requisite skill to position, align, and place the device. In the developing world, this is not always available, and in the chaos of an in-hospital code, prehospital trauma, or a mass-casualty incident, even trained providers can have trouble correctly placing IV or IO needles. The Tib-Finder is an intuitive drill guide that significantly improves efficiency with which IO can be placed in the proximal tibia. Here, we present the conceptualization, design, and creation of an alpha-prototype Tib-Finder drill guide in less than 90 days; initial validation was achieved through analysis of anthropometric measurements of human skeletons, and usability studies were performed using untrained volunteers and mannequins. The Tib-Finder is intended to provide first responders and medical personnel, in the first world and the developing world, a way to accurately and repeatably locate the proximal tibia and achieve safe, rapid intravascular access in critically ill patients. Further, it eliminates the need for direct contact between patients and caregivers and improves the ease-of-use of IO devices by first responders and healthcare providers.
Defense Advanced Research Projects Agency (Contract HR0011-15-C-0028)