Efficiency loss in a Cournot oligopoly with convex market demand

We consider a Cournot oligopoly model where multiple suppliers (oligopolists) compete by choosing quantities. We compare the social welfare achieved at a Cournot equilibrium to the maximum possible, for the case where the inverse market demand function is convex. We establish a lower bound on the ef...

Full description

Bibliographic Details
Main Authors: Tsitsiklis, John N. (Author), Xu, Yunjian (Author)
Other Authors: Massachusetts Institute of Technology. Laboratory for Information and Decision Systems (Contributor)
Format: Article
Language:English
Published: Elsevier BV, 2020-12-22T20:49:21Z.
Subjects:
Online Access:Get fulltext
LEADER 01655 am a22001813u 4500
001 128900
042 |a dc 
100 1 0 |a Tsitsiklis, John N.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Information and Decision Systems  |e contributor 
700 1 0 |a Xu, Yunjian  |e author 
245 0 0 |a Efficiency loss in a Cournot oligopoly with convex market demand 
260 |b Elsevier BV,   |c 2020-12-22T20:49:21Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/128900 
520 |a We consider a Cournot oligopoly model where multiple suppliers (oligopolists) compete by choosing quantities. We compare the social welfare achieved at a Cournot equilibrium to the maximum possible, for the case where the inverse market demand function is convex. We establish a lower bound on the efficiency of Cournot equilibria in terms of a scalar parameter derived from the inverse demand function, namely, the ratio of the slope of the inverse demand function at the Cournot equilibrium to the average slope of the inverse demand function between the Cournot equilibrium and a social optimum. Also, for the case of a single, monopolistic, profit maximizing supplier, or of multiple suppliers who collude to maximize their total profit, we establish a similar but tighter lower bound on the efficiency of the resulting output. Our results provide nontrivial quantitative bounds on the loss of social welfare for several convex inverse demand functions that appear in the economics literature. © 2014 Elsevier B.V. 
520 |a National Science Foundation (Grant CMMI-0856063) 
546 |a en 
655 7 |a Article 
773 |t Journal of Mathematical Economics