Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes

We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside...

Full description

Bibliographic Details
Main Authors: Bi, Sheng (Author), Banda, Harish (Author), Chen, Ming (Author), Niu, Liang (Author), Chen, Mingyu (Author), Wu, Taizheng (Author), Wang, Jiasheng (Author), Wang, Runxi (Author), Feng, Jiamao (Author), Chen, Tianyang (Author), Dinca, Mircea (Author), Kornyshev, Alexei A. (Author), Feng, Guang (Author)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: Springer Science and Business Media LLC, 2021-01-06T21:45:30Z.
Subjects:
Online Access:Get fulltext
LEADER 02209 am a22003013u 4500
001 129325
042 |a dc 
100 1 0 |a Bi, Sheng  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
700 1 0 |a Banda, Harish  |e author 
700 1 0 |a Chen, Ming  |e author 
700 1 0 |a Niu, Liang  |e author 
700 1 0 |a Chen, Mingyu  |e author 
700 1 0 |a Wu, Taizheng  |e author 
700 1 0 |a Wang, Jiasheng  |e author 
700 1 0 |a Wang, Runxi  |e author 
700 1 0 |a Feng, Jiamao  |e author 
700 1 0 |a Chen, Tianyang  |e author 
700 1 0 |a Dinca, Mircea  |e author 
700 1 0 |a Kornyshev, Alexei A.  |e author 
700 1 0 |a Feng, Guang  |e author 
245 0 0 |a Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes 
260 |b Springer Science and Business Media LLC,   |c 2021-01-06T21:45:30Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/129325 
520 |a We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These 'computational microscopy' results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy-power balance, providing a blueprint for future characterization and design of these new supercapacitor systems. 
546 |a en 
655 7 |a Article 
773 |t Nature Materials