Sparse decomposition light-field microscopy for high speed imaging of neuronal activity

One of the major challenges in large scale optical imaging of neuronal activity is to simultaneously achieve sufficient temporal and spatial resolution across a large volume. Here, we introduce sparse decomposition light-field microscopy (SDLFM), a computational imaging technique based on light-fiel...

Full description

Bibliographic Details
Main Authors: Yoon, Young-Gyu (Author), Wang, Zeguan (Author), Pak, Nikita (Author), Park, Demian (Author), Dai, Peilun (Author), Kang, Jeong Seuk (Author), Suk, Ho-Jun (Author), Symvoulidis, Panagiotis (Author), Guner-Ataman, Burcu (Author), Wang, Kai (Author), Boyden, Edward (Author)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Center for Neurobiological Engineering (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences (Contributor), Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), McGovern Institute for Brain Research at MIT (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor)
Format: Article
Language:English
Published: The Optical Society, 2021-03-29T14:37:35Z.
Subjects:
Online Access:Get fulltext
LEADER 02954 am a22003973u 4500
001 130251
042 |a dc 
100 1 0 |a Yoon, Young-Gyu  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Center for Neurobiological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a McGovern Institute for Brain Research at MIT  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
700 1 0 |a Wang, Zeguan  |e author 
700 1 0 |a Pak, Nikita  |e author 
700 1 0 |a Park, Demian  |e author 
700 1 0 |a Dai, Peilun  |e author 
700 1 0 |a Kang, Jeong Seuk  |e author 
700 1 0 |a Suk, Ho-Jun  |e author 
700 1 0 |a Symvoulidis, Panagiotis  |e author 
700 1 0 |a Guner-Ataman, Burcu  |e author 
700 1 0 |a Wang, Kai  |e author 
700 1 0 |a Boyden, Edward  |e author 
245 0 0 |a Sparse decomposition light-field microscopy for high speed imaging of neuronal activity 
260 |b The Optical Society,   |c 2021-03-29T14:37:35Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/130251 
520 |a One of the major challenges in large scale optical imaging of neuronal activity is to simultaneously achieve sufficient temporal and spatial resolution across a large volume. Here, we introduce sparse decomposition light-field microscopy (SDLFM), a computational imaging technique based on light-field microscopy (LFM) that takes algorithmic advantage of the high temporal resolution of LFM and the inherent temporal sparsity of spikes to improve effective spatial resolution and signal-to-noise ratios (SNRs). With increased effective spatial resolution and SNRs, neuronal activity at the single-cell level can be recovered over a large volume. We demonstrate the single-cell imaging capability of SDLFM with in vivo imaging of neuronal activity of whole brains of larval zebrafish with estimated lateral and axial resolutions of ∼3.5 µm and ∼7.4 µm, respectively, acquired at volumetric imaging rates up to 50 Hz. We also show that SDLFM increases the quality of neural imaging in adult fruit flies. 
520 |a National Science Foundation (Grant 1848029) 
520 |a U. S. Army Research Laboratory and the U. S. Army Research Office (Contract W911NF1510548) 
520 |a National Institutes of Health (Grants 1R01DA045549, 1R41MH112318, 1R43MH109332, 1RM1HG008525, 1DP1NS087724) 
546 |a en 
655 7 |a Article 
773 |t Optica