Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph

Image-based teleconsultation using smartphones has become increasingly popular. In parallel, deep learning algorithms have been developed to detect radiological findings in chest X-rays (CXRs). However, the feasibility of using smartphones to automate this process has yet to be evaluated. This study...

Full description

Bibliographic Details
Main Authors: Kuo, Po-Chih (Author), Pollard, Tom Joseph (Author), Johnson, Alistair Edward William (Author), Celi, Leo Anthony G. (Author)
Other Authors: Massachusetts Institute of Technology. Institute for Medical Engineering & Science (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2021-04-27T15:28:05Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Image-based teleconsultation using smartphones has become increasingly popular. In parallel, deep learning algorithms have been developed to detect radiological findings in chest X-rays (CXRs). However, the feasibility of using smartphones to automate this process has yet to be evaluated. This study developed a recalibration method to build deep learning models to detect radiological findings on CXR photographs. Two publicly available databases (MIMIC-CXR and CheXpert) were used to build the models, and four derivative datasets containing 6453 CXR photographs were collected to evaluate model performance. After recalibration, the model achieved areas under the receiver operating characteristic curve of 0.80 (95% confidence interval: 0.78-0.82), 0.88 (0.86-0.90), 0.81 (0.79-0.84), 0.79 (0.77-0.81), 0.84 (0.80-0.88), and 0.90 (0.88-0.92), respectively, for detecting cardiomegaly, edema, consolidation, atelectasis, pneumothorax, and pleural effusion. The recalibration strategy, respectively, recovered 84.9%, 83.5%, 53.2%, 57.8%, 69.9%, and 83.0% of performance losses of the uncalibrated model. We conclude that the recalibration method can transfer models from digital CXRs to CXR photographs, which is expected to help physicians' clinical works.
Taiwan. Ministry of Science and Technology (Grant MOST109-2222-E-007-004-MY3)
National Institutes of Health (U.S.) (R01 grant EB017205)