Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal

A variety of monolayer crystals have been proposed to be two-dimensional topological insulators exhibiting the quantum spin Hall effect (QSHE), possibly even at high temperatures. Here we report the observation of the QSHE in monolayer tungsten ditelluride (WTe2) at temperatures up to 100 kelvin. In...

Full description

Bibliographic Details
Main Authors: Wu, Sanfeng (Author), Fatemi, Valla (Author), Gibson, Quinn D (Author), Watanabe, Kenji (Author), Taniguchi, Takashi (Author), Cava, Robert J (Author), Jarillo-Herrero, Pablo (Author)
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS), 2021-10-27T20:09:53Z.
Subjects:
Online Access:Get fulltext
LEADER 01538 am a22002053u 4500
001 134925
042 |a dc 
100 1 0 |a Wu, Sanfeng  |e author 
700 1 0 |a Fatemi, Valla  |e author 
700 1 0 |a Gibson, Quinn D  |e author 
700 1 0 |a Watanabe, Kenji  |e author 
700 1 0 |a Taniguchi, Takashi  |e author 
700 1 0 |a Cava, Robert J  |e author 
700 1 0 |a Jarillo-Herrero, Pablo  |e author 
245 0 0 |a Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal 
260 |b American Association for the Advancement of Science (AAAS),   |c 2021-10-27T20:09:53Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/134925 
520 |a A variety of monolayer crystals have been proposed to be two-dimensional topological insulators exhibiting the quantum spin Hall effect (QSHE), possibly even at high temperatures. Here we report the observation of the QSHE in monolayer tungsten ditelluride (WTe2) at temperatures up to 100 kelvin. In the short-edge limit, the monolayer exhibits the hallmark transport conductance, ∼e2/h per edge, where e is the electron charge and h is Planck's constant. Moreover, a magnetic field suppresses the conductance, and the observed Zeeman-type gap indicates the existence of a Kramers degenerate point and the importance of time-reversal symmetry for protection from elastic backscattering. Our results establish the QSHE at temperatures much higher than in semiconductor heterostructures and allow for exploring topological phases in atomically thin crystals. 
655 7 |a Article 
773 |t Science