Alleviating label switching with optimal transport

© 2019 Neural information processing systems foundation. All rights reserved. Label switching is a phenomenon arising in mixture model posterior inference that prevents one from meaningfully assessing posterior statistics using standard Monte Carlo procedures. This issue arises due to invariance of...

Full description

Bibliographic Details
Main Authors: Monteiller, Pierre (Author), Claici, Sebastian (Author), Chien, Edward (Author), Mirzazadeh, Farzaneh (Author), Solomon, Justin (Author), Yurochkin, Mikhail (Author)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), MIT-IBM Watson AI Lab (Contributor)
Format: Article
Language:English
Published: 2022-01-03T16:40:50Z.
Subjects:
Online Access:Get fulltext
LEADER 01783 am a22002653u 4500
001 137353.2
042 |a dc 
100 1 0 |a Monteiller, Pierre  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a MIT-IBM Watson AI Lab  |e contributor 
700 1 0 |a Claici, Sebastian  |e author 
700 1 0 |a Chien, Edward  |e author 
700 1 0 |a Mirzazadeh, Farzaneh  |e author 
700 1 0 |a Solomon, Justin  |e author 
700 1 0 |a Yurochkin, Mikhail  |e author 
245 0 0 |a Alleviating label switching with optimal transport 
260 |c 2022-01-03T16:40:50Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/137353.2 
520 |a © 2019 Neural information processing systems foundation. All rights reserved. Label switching is a phenomenon arising in mixture model posterior inference that prevents one from meaningfully assessing posterior statistics using standard Monte Carlo procedures. This issue arises due to invariance of the posterior under actions of a group; for example, permuting the ordering of mixture components has no effect on the likelihood. We propose a resolution to label switching that leverages machinery from optimal transport. Our algorithm efficiently computes posterior statistics in the quotient space of the symmetry group. We give conditions under which there is a meaningful solution to label switching and demonstrate advantages over alternative approaches on simulated and real data. 
520 |a Army Research Office (Grant W911NF1710068) 
520 |a Air Force Office of Scientific Research (Award FA9550-19-1-031) 
520 |a National Science Foundation (Grant IIS-1838071) 
546 |a en 
655 7 |a Article 
773 |t Advances in Neural Information Processing Systems