Modular Integration of Hydrogel Neural Interfaces

Thermal drawing has been recently leveraged to yield multifunctional, fiber-based neural probes at near kilometer length scales. Despite its promise, the widespread adoption of this approach has been impeded by (1) material compatibility requirements and (2) labor-intensive interfacing of functional...

Full description

Bibliographic Details
Main Authors: Tabet, Anthony (Author), Antonini, Marc-Joseph (Author), Sahasrabudhe, Atharva (Author), Park, Jimin (Author), Rosenfeld, Dekel (Author), Koehler, Florian (Author), Yuk, Hyunwoo (Author), Hanson, Samuel (Author), Stinson, Jordan (Author), Stok, Melissa (Author), Zhao, Xuanhe (Author), Wang, Chun (Author), Anikeeva, Polina (Author)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2022-01-27T14:58:57Z.
Subjects:
Online Access:Get fulltext
LEADER 02594 am a22003013u 4500
001 139769
042 |a dc 
100 1 0 |a Tabet, Anthony  |e author 
700 1 0 |a Antonini, Marc-Joseph  |e author 
700 1 0 |a Sahasrabudhe, Atharva  |e author 
700 1 0 |a Park, Jimin  |e author 
700 1 0 |a Rosenfeld, Dekel  |e author 
700 1 0 |a Koehler, Florian  |e author 
700 1 0 |a Yuk, Hyunwoo  |e author 
700 1 0 |a Hanson, Samuel  |e author 
700 1 0 |a Stinson, Jordan  |e author 
700 1 0 |a Stok, Melissa  |e author 
700 1 0 |a Zhao, Xuanhe  |e author 
700 1 0 |a Wang, Chun  |e author 
700 1 0 |a Anikeeva, Polina  |e author 
245 0 0 |a Modular Integration of Hydrogel Neural Interfaces 
260 |b American Chemical Society (ACS),   |c 2022-01-27T14:58:57Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/139769 
520 |a Thermal drawing has been recently leveraged to yield multifunctional, fiber-based neural probes at near kilometer length scales. Despite its promise, the widespread adoption of this approach has been impeded by (1) material compatibility requirements and (2) labor-intensive interfacing of functional features to external hardware. Furthermore, in multifunctional fibers, significant volume is occupied by passive polymer cladding that so far has only served structural or electrical insulation purposes. In this article, we report a rapid, robust, and modular approach to creating multifunctional fiber-based neural interfaces using a solvent evaporation or entrapment-driven (SEED) integration process. This process brings together electrical, optical, and microfluidic modalities all encased within a copolymer comprised of water-soluble poly(ethylene glycol) tethered to water-insoluble poly(urethane) (PU-PEG). We employ these devices for simultaneous optogenetics and electrophysiology and demonstrate that multifunctional neural probes can be used to deliver cellular cargo with high viability. Upon exposure to water, PU-PEG cladding spontaneously forms a hydrogel, which in addition to enabling integration of modalities, can harbor small molecules and nanomaterials that can be released into local tissue following implantation. We also synthesized a custom nanodroplet forming block polymer and demonstrated that embedding such materials within the hydrogel cladding of our probes enables delivery of hydrophobic small molecules in vitro and in vivo. Our approach widens the chemical toolbox and expands the capabilities of multifunctional neural interfaces. 
546 |a en 
655 7 |a Article 
773 |t 10.1021/ACSCENTSCI.1C00592 
773 |t ACS Central Science