Lifetime-resolved photon-correlation Fourier spectroscopy

The excited state population of single solid-state emitters is subjected to energy fluctuations around the equilibrium driven by the bath and relaxation through the emission of phonons or photons. Simultaneous measurement of the associated spectral dynamics requires a technique with a high spectral...

Full description

Bibliographic Details
Main Authors: Utzat, Hendrik (Author), Bawendi, Moungi G (Author)
Format: Article
Language:English
Published: The Optical Society, 2022-02-11T19:33:52Z.
Subjects:
Online Access:Get fulltext
LEADER 01590 am a22001693u 4500
001 140299
042 |a dc 
100 1 0 |a Utzat, Hendrik  |e author 
700 1 0 |a Bawendi, Moungi G  |e author 
245 0 0 |a Lifetime-resolved photon-correlation Fourier spectroscopy 
260 |b The Optical Society,   |c 2022-02-11T19:33:52Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/140299 
520 |a The excited state population of single solid-state emitters is subjected to energy fluctuations around the equilibrium driven by the bath and relaxation through the emission of phonons or photons. Simultaneous measurement of the associated spectral dynamics requires a technique with a high spectral and temporal resolution with an additionally high temporal dynamic range. We propose a pulsed excitation-laser analog of photon-correlation Fourier spectroscopy (PCFS), which extracts the linewidth and spectral diffusion dynamics along the emission lifetime trajectory of the emitter, effectively discriminating spectral dynamics from relaxation and bath fluctuations. This lifetime-resolved PCFS correlates photon-pairs at the output arm of a Michelson interferometer in both their time-delay between laser-excitation and photon-detection T and the time-delay between two photons τ. We propose the utility of the technique for systems with changing relative contributions to the emission from multiple states, for example, quantum emitters exhibiting phonon-mediated exchange between different fine-structure states. 
546 |a en 
655 7 |a Article 
773 |t 10.1364/OE.421642 
773 |t Optics Express