Tunable Single-Ion Anisotropy in Spin-1 Models Realized with Ultracold Atoms

Mott insulator plateaus in optical lattices are a versatile platform to study spin physics. Using sites occupied by two bosons with an internal degree of freedom, we realize a uniaxial single-ion anisotropy term proportional to (S^{z})^{2} that plays an important role in stabilizing magnetism for lo...

Full description

Bibliographic Details
Main Authors: Chung, Woo Chang (Author), de Hond, Julius (Author), Xiang, Jinggang (Author), Cruz-Colón, Enid (Author), Ketterle, Wolfgang (Author)
Format: Article
Language:English
Published: American Physical Society (APS), 2022-04-20T18:33:31Z.
Subjects:
Online Access:Get fulltext
LEADER 01297 am a22002053u 4500
001 141992
042 |a dc 
100 1 0 |a Chung, Woo Chang  |e author 
700 1 0 |a de Hond, Julius  |e author 
700 1 0 |a Xiang, Jinggang  |e author 
700 1 0 |a Cruz-Colón, Enid  |e author 
700 1 0 |a Ketterle, Wolfgang  |e author 
245 0 0 |a Tunable Single-Ion Anisotropy in Spin-1 Models Realized with Ultracold Atoms 
260 |b American Physical Society (APS),   |c 2022-04-20T18:33:31Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/141992 
520 |a Mott insulator plateaus in optical lattices are a versatile platform to study spin physics. Using sites occupied by two bosons with an internal degree of freedom, we realize a uniaxial single-ion anisotropy term proportional to (S^{z})^{2} that plays an important role in stabilizing magnetism for low-dimensional magnetic materials. Here we explore nonequilibrium spin dynamics and observe a resonant effect in the spin alignment as a function of lattice depth when exchange coupling and on-site anisotropy are similar. Our results are supported by many-body numerical simulations and are captured by the analytical solution of a two-site model. 
546 |a en 
655 7 |a Article 
773 |t 10.1103/PHYSREVLETT.126.163203 
773 |t Physical Review Letters