A quantum processor based on coherent transport of entangled atom arrays

<jats:title>Abstract</jats:title><jats:p>The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems<jats:sup>1,2</jats:sup>. In most state-of-the-art approaches, qu...

Full description

Bibliographic Details
Main Authors: Bluvstein, Dolev (Author), Levine, Harry (Author), Semeghini, Giulia (Author), Wang, Tout T (Author), Ebadi, Sepehr (Author), Kalinowski, Marcin (Author), Keesling, Alexander (Author), Maskara, Nishad (Author), Pichler, Hannes (Author), Greiner, Markus (Author), Vuletić, Vladan (Author), Lukin, Mikhail D (Author)
Format: Article
Language:English
Published: Springer Science and Business Media LLC, 2022-05-04T16:15:27Z.
Subjects:
Online Access:Get fulltext
LEADER 02692 am a22002893u 4500
001 142322
042 |a dc 
100 1 0 |a Bluvstein, Dolev  |e author 
700 1 0 |a Levine, Harry  |e author 
700 1 0 |a Semeghini, Giulia  |e author 
700 1 0 |a Wang, Tout T  |e author 
700 1 0 |a Ebadi, Sepehr  |e author 
700 1 0 |a Kalinowski, Marcin  |e author 
700 1 0 |a Keesling, Alexander  |e author 
700 1 0 |a Maskara, Nishad  |e author 
700 1 0 |a Pichler, Hannes  |e author 
700 1 0 |a Greiner, Markus  |e author 
700 1 0 |a Vuletić, Vladan  |e author 
700 1 0 |a Lukin, Mikhail D  |e author 
245 0 0 |a A quantum processor based on coherent transport of entangled atom arrays 
260 |b Springer Science and Business Media LLC,   |c 2022-05-04T16:15:27Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/142322 
520 |a <jats:title>Abstract</jats:title><jats:p>The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems<jats:sup>1,2</jats:sup>. In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation<jats:sup>3-5</jats:sup>. We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state<jats:sup>6,7</jats:sup>. Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits<jats:sup>8</jats:sup> and a toric code state on a torus with sixteen data and eight ancillary qubits<jats:sup>9</jats:sup>. Finally, we use this architecture to realize a hybrid analogue-digital evolution<jats:sup>2</jats:sup> and use it for measuring entanglement entropy in quantum simulations<jats:sup>10-12</jats:sup>, experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars<jats:sup>13,14</jats:sup>. Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.</jats:p> 
546 |a en 
655 7 |a Article 
773 |t 10.1038/s41586-022-04592-6 
773 |t Nature