Error Threshold for Color Codes and Random Three-Body Ising Models

We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechani...

Full description

Bibliographic Details
Main Authors: Bombin, Hector (Contributor), Martin-Delgado, M. A. (Author), Katzgraber, Helmut G. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2010-02-17T16:47:51Z.
Subjects:
Online Access:Get fulltext
LEADER 01271 am a22002053u 4500
001 51774
042 |a dc 
100 1 0 |a Bombin, Hector  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Bombin, Hector  |e contributor 
100 1 0 |a Bombin, Hector  |e contributor 
700 1 0 |a Martin-Delgado, M. A.  |e author 
700 1 0 |a Katzgraber, Helmut G.  |e author 
245 0 0 |a Error Threshold for Color Codes and Random Three-Body Ising Models 
260 |b American Physical Society,   |c 2010-02-17T16:47:51Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/51774 
520 |a We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of pc=0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise. 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review Letters