Sub-Rayleigh-diffraction-bound quantum imaging

The spatial resolution of an imaging apparatus is limited by the Rayleigh diffraction bound, a consequence of the imager's finite spatial extent. We show some N-photon strategies that permit resolution of details that are smaller than this bound, attaining either a 1∕√N enhancement (standard qu...

Full description

Bibliographic Details
Main Authors: Giovannetti, Vittorio (Author), Lloyd, Seth (Contributor), Maccone, Lorenzo (Author), Shapiro, Jeffrey H. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2010-03-09T18:14:03Z.
Subjects:
Online Access:Get fulltext
LEADER 01599 am a22002653u 4500
001 52420
042 |a dc 
100 1 0 |a Giovannetti, Vittorio  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Lloyd, Seth  |e contributor 
100 1 0 |a Lloyd, Seth  |e contributor 
100 1 0 |a Shapiro, Jeffrey H.  |e contributor 
700 1 0 |a Lloyd, Seth  |e author 
700 1 0 |a Maccone, Lorenzo  |e author 
700 1 0 |a Shapiro, Jeffrey H.  |e author 
245 0 0 |a Sub-Rayleigh-diffraction-bound quantum imaging 
260 |b American Physical Society,   |c 2010-03-09T18:14:03Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/52420 
520 |a The spatial resolution of an imaging apparatus is limited by the Rayleigh diffraction bound, a consequence of the imager's finite spatial extent. We show some N-photon strategies that permit resolution of details that are smaller than this bound, attaining either a 1∕√N enhancement (standard quantum limit) or a 1∕N enhancement (Heisenberg-like scaling) over standard techniques. In the incoherent imaging regime, the methods presented are loss resistant, since classical light sources suffice. Our results may be of importance in many applications: microscopy, telescopy, lithography, metrology, etc. 
520 |a DARPA Quantum Sensors Program 
520 |a W. M. Keck Foundation Center for Extreme Quantum Information Theory 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review A