A biomimetic adaptive algorithm and low-power architecture for decoders

Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastl...

Full description

Bibliographic Details
Main Authors: Andersen, Richard A. (Author), Musallam, Sam (Author), Penagos, Hector L. (Contributor), Wattanapanitch, Woradorn (Contributor), Rapoport, Benjamin I. (Contributor), Sarpeshkar, Rahul (Contributor)
Other Authors: Harvard University- (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2010-04-06T16:16:40Z.
Subjects:
Online Access:Get fulltext
LEADER 02596 am a22003973u 4500
001 53518
042 |a dc 
100 1 0 |a Andersen, Richard A.  |e author 
100 1 0 |a Harvard University-  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Sarpeshkar, Rahul  |e contributor 
100 1 0 |a Penagos, Hector L.  |e contributor 
100 1 0 |a Wattanapanitch, Woradorn  |e contributor 
100 1 0 |a Rapoport, Benjamin I.  |e contributor 
100 1 0 |a Sarpeshkar, Rahul  |e contributor 
700 1 0 |a Musallam, Sam  |e author 
700 1 0 |a Penagos, Hector L.  |e author 
700 1 0 |a Wattanapanitch, Woradorn  |e author 
700 1 0 |a Rapoport, Benjamin I.  |e author 
700 1 0 |a Sarpeshkar, Rahul  |e author 
245 0 0 |a A biomimetic adaptive algorithm and low-power architecture for decoders 
260 |b Institute of Electrical and Electronics Engineers,   |c 2010-04-06T16:16:40Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/53518 
520 |a Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. 
520 |a National Eye Institute (grant R01-EY13337) 
520 |a United States National Institutes of Health (grants R01-NS056140 and R01-EY15545) 
520 |a McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) Program 
546 |a en_US 
690 |a adaptive algorithms 
690 |a low-power 
690 |a neural decoding 
690 |a brain-machine interface 
690 |a biomimetic 
690 |a analog 
655 7 |a Article 
773 |t Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009.