Fabrication methods and performance of low-permeability microfluidic components for a miniaturized wearable drug delivery system

In this paper, we describe low-permeability components of a microfluidic drug delivery system fabricated with versatile micromilling and lamination techniques. The fabrication process uses laminate sheets which are machined using XY milling tables commonly used in the printed-circuit industry. This...

Full description

Bibliographic Details
Main Authors: Mescher, Mark J. (Author), Swan, Erin Leary (Contributor), Fiering, Jason (Author), Holmboe, Maria E. (Author), Sewell, William F. (Author), Kujawa, Sharon G. (Author), McKenna, Michael J. (Contributor), Borenstein, Jeffrey T. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2010-11-08T14:09:12Z.
Subjects:
Online Access:Get fulltext
LEADER 02158 am a22002773u 4500
001 59852
042 |a dc 
100 1 0 |a Mescher, Mark J.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a McKenna, Michael J.  |e contributor 
100 1 0 |a Swan, Erin Leary  |e contributor 
700 1 0 |a Swan, Erin Leary  |e author 
700 1 0 |a Fiering, Jason  |e author 
700 1 0 |a Holmboe, Maria E.  |e author 
700 1 0 |a Sewell, William F.  |e author 
700 1 0 |a Kujawa, Sharon G.  |e author 
700 1 0 |a McKenna, Michael J.  |e author 
700 1 0 |a Borenstein, Jeffrey T.  |e author 
245 0 0 |a Fabrication methods and performance of low-permeability microfluidic components for a miniaturized wearable drug delivery system 
260 |b Institute of Electrical and Electronics Engineers,   |c 2010-11-08T14:09:12Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/59852 
520 |a In this paper, we describe low-permeability components of a microfluidic drug delivery system fabricated with versatile micromilling and lamination techniques. The fabrication process uses laminate sheets which are machined using XY milling tables commonly used in the printed-circuit industry. This adaptable platform for polymer microfluidics readily accommodates integration with silicon-based sensors, printed-circuit, and surface-mount technologies. We have used these methods to build components used in a wearable liquid-drug delivery system for in vivo studies. The design, fabrication, and performance of membrane-based fluidic capacitors and manual screw valves provide detailed examples of the capability and limitations of the fabrication method. We demonstrate fluidic capacitances ranging from 0.015 to 0.15 muL/kPa, screw valves with on/off flow ratios greater than 38000, and a 45times reduction in the aqueous fluid loss rate to the ambient due to permeation through a silicone diaphragm layer. 
520 |a National Institute of Deafness and other Communication Disorders (U.S.) (NIDCD) (Grant 5 R01 DC 006848-02) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Microelectromechanical Systems