Channels that die

Given the possibility of communication systems failing catastrophically, we investigate limits to communicating over channels that fail at random times. These channels are finite-state semi-Markov channels. We show that communication with arbitrarily small probability of error is not possible. Makin...

Full description

Bibliographic Details
Main Authors: Goyal, Vivek K. (Contributor), Mitter, Sanjoy K. (Contributor), Varshney, Lav Raj (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Laboratory for Information and Decision Systems (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2010-12-17T21:42:24Z.
Subjects:
Online Access:Get fulltext
LEADER 01725 am a22002653u 4500
001 60318
042 |a dc 
100 1 0 |a Goyal, Vivek K.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Information and Decision Systems  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Goyal, Vivek K.  |e contributor 
100 1 0 |a Goyal, Vivek K.  |e contributor 
100 1 0 |a Mitter, Sanjoy K.  |e contributor 
100 1 0 |a Varshney, Lav Raj  |e contributor 
700 1 0 |a Mitter, Sanjoy K.  |e author 
700 1 0 |a Varshney, Lav Raj  |e author 
245 0 0 |a Channels that die 
260 |b Institute of Electrical and Electronics Engineers,   |c 2010-12-17T21:42:24Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/60318 
520 |a Given the possibility of communication systems failing catastrophically, we investigate limits to communicating over channels that fail at random times. These channels are finite-state semi-Markov channels. We show that communication with arbitrarily small probability of error is not possible. Making use of results in finite block-length channel coding, we determine sequences of block-lengths that optimize transmission volume communicated at fixed maximum message error probabilities. A dynamic programming formulation is used to show that channel state feedback does not improve performance. 
520 |a National Science Foundation (U.S.) (Grant 0729069) (Grant 0325774) 
546 |a en_US 
655 7 |a Article 
773 |t Allerton Conference on Communication, Control, and Computing