Electroactive hydrodynamic weirs for microparticle manipulation and patterning

We present a platform for parallelized manipulations of individual polarizable micron-scale particles (i.e., microparticles) that combines negative dielectrophoretic forcing with the passive capture of hydrodynamic weir-based trapping. Our work enables manipulations using ejection- and/or exclusion-...

Full description

Bibliographic Details
Main Authors: Taff, Brian M. (Contributor), Desai, Salil P. (Contributor), Voldman, Joel (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: American Institute of Physics, 2011-01-07T20:33:30Z.
Subjects:
Online Access:Get fulltext
LEADER 01664 am a22002533u 4500
001 60409
042 |a dc 
100 1 0 |a Taff, Brian M.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Voldman, Joel  |e contributor 
100 1 0 |a Voldman, Joel  |e contributor 
100 1 0 |a Taff, Brian M.  |e contributor 
100 1 0 |a Desai, Salil P.  |e contributor 
700 1 0 |a Desai, Salil P.  |e author 
700 1 0 |a Voldman, Joel  |e author 
245 0 0 |a Electroactive hydrodynamic weirs for microparticle manipulation and patterning 
260 |b American Institute of Physics,   |c 2011-01-07T20:33:30Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/60409 
520 |a We present a platform for parallelized manipulations of individual polarizable micron-scale particles (i.e., microparticles) that combines negative dielectrophoretic forcing with the passive capture of hydrodynamic weir-based trapping. Our work enables manipulations using ejection- and/or exclusion-based methods. In ejection operations, we unload targeted weirs by displacing microparticles from their capture faces via electrode activation. In exclusion-based operations, we prevent weir loading by activating selected on-chip electrodes before introducing microparticles into the system. Our work describes the device's passive loading dynamics and demonstrates enhanced functionalities by forming a variety of particle patterns. 
520 |a National Institutes of Health (U.S.) (Contract No. RR19652) 
520 |a Singapore-MIT Alliance 
546 |a en_US 
655 7 |a Article 
773 |t Applied Physical Letters