Thermometry and Refrigeration in a Two-Component Mott Insulator of Ultracold Atoms

Interesting spin Hamiltonians can be realized with ultracold atoms in a two-component Mott insulator (2CMI) [Adv. Phys. 56, 243 (2007); Rev. Mod. Phys. 80, 885 (2008)]. It was recently demonstrated that the application of a magnetic field gradient to the 2CMI enables new techniques of thermometry [P...

Full description

Bibliographic Details
Main Authors: Weld, David M. (Contributor), Miyake, Hirokazu (Contributor), Medley, Patrick M. (Contributor), Pritchard, David E. (Contributor), Ketterle, Wolfgang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor), MIT-Harvard Center for Ultracold Atoms (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2011-03-11T19:40:48Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Interesting spin Hamiltonians can be realized with ultracold atoms in a two-component Mott insulator (2CMI) [Adv. Phys. 56, 243 (2007); Rev. Mod. Phys. 80, 885 (2008)]. It was recently demonstrated that the application of a magnetic field gradient to the 2CMI enables new techniques of thermometry [Phys. Rev. Lett. 103, 245301 (2009)] and adiabatic cooling [e-print arXiv:1006.4674]. Here we present a theoretical description which provides quantitative analysis of these two techniques. We show that adiabatic reduction of the field gradient is capable of cooling below the Curie or Néel temperature of certain spin-ordered phases.
National Science Foundation (U.S.) (MURI program)
United States. Army Research Office (ARO Grant No. W911NF-07- 1-0493)
United States. Defense Advanced Research Projects Agency (OLE program)