Algorithmic folding complexity

How do we most quickly fold a paper strip (modeled as a line) to obtain a desired mountain-valley pattern of equidistant creases (viewed as a binary string)? Define the folding complexity of a mountain-valley string as the minimum number of simple folds required to construct it. We show that the fol...

Full description

Bibliographic Details
Main Authors: Cardinal, Jean (Author), Demaine, Erik D. (Contributor), Demaine, Martin L. (Contributor), Imahori, Shinji (Author), Langerman, Stefan (Author), Uehara, Ryuhei (Author)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Springer, 2011-04-15T19:29:07Z.
Subjects:
Online Access:Get fulltext
LEADER 01620 am a22002653u 4500
001 62218
042 |a dc 
100 1 0 |a Cardinal, Jean  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Demaine, Erik D.  |e contributor 
100 1 0 |a Demaine, Erik D.  |e contributor 
100 1 0 |a Demaine, Martin L.  |e contributor 
700 1 0 |a Demaine, Erik D.  |e author 
700 1 0 |a Demaine, Martin L.  |e author 
700 1 0 |a Imahori, Shinji  |e author 
700 1 0 |a Langerman, Stefan  |e author 
700 1 0 |a Uehara, Ryuhei  |e author 
245 0 0 |a Algorithmic folding complexity 
260 |b Springer,   |c 2011-04-15T19:29:07Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/62218 
520 |a How do we most quickly fold a paper strip (modeled as a line) to obtain a desired mountain-valley pattern of equidistant creases (viewed as a binary string)? Define the folding complexity of a mountain-valley string as the minimum number of simple folds required to construct it. We show that the folding complexity of a length-n uniform string (all mountains or all valleys), and hence of a length-n pleat (alternating mountain/valley), is polylogarithmic in n. We also show that the maximum possible folding complexity of any string of length n is O(n/lgn), meeting a previously known lower bound. 
546 |a en_US 
655 7 |a Article 
773 |t Algorithms and computation : ... International Symposium, ISAAC ... : proceedings.