Tree block coordinate descent for map in graphical models

abstract URL: http://jmlr.csail.mit.edu/proceedings/papers/v5/sontag09a.html

Bibliographic Details
Main Authors: Sontag, David Alexander (Contributor), Jaakkola, Tommi S. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Journal of Machine Learning Research, 2011-05-25T19:13:22Z.
Subjects:
Online Access:Get fulltext
LEADER 01731 am a22002173u 4500
001 63118
042 |a dc 
100 1 0 |a Sontag, David Alexander  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Jaakkola, Tommi S.  |e contributor 
100 1 0 |a Jaakkola, Tommi S.  |e contributor 
100 1 0 |a Sontag, David Alexander  |e contributor 
700 1 0 |a Jaakkola, Tommi S.  |e author 
245 0 0 |a Tree block coordinate descent for map in graphical models 
260 |b Journal of Machine Learning Research,   |c 2011-05-25T19:13:22Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/63118 
520 |a abstract URL: http://jmlr.csail.mit.edu/proceedings/papers/v5/sontag09a.html 
520 |a A number of linear programming relaxations have been proposed for finding most likely settings of the variables (MAP) in large probabilistic models. The relaxations are often succinctly expressed in the dual and reduce to different types of reparameterizations of the original model. The dual objectives are typically solved by performing local block coordinate descent steps. In this work, we show how to perform block coordinate descent on spanning trees of the graphical model. We also show how all of the earlier dual algorithms are related to each other, giving transformations from one type of reparameterization to another while maintaining monotonicity relative to a common objective function. Finally, we quantify when the MAP solution can and cannot be decoded directly from the dual LP relaxation. 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the 12th International Conference on Artifcial Intelligence and Statistics (AISTATS) 2009