Quantum State Restoration and Single-Copy Tomography for Ground States of Hamiltonians

Given a single copy of an unknown quantum state, the no-cloning theorem limits the amount of information that can be extracted from it. Given a gapped Hamiltonian, in most situations it is impractical to compute properties of its ground state, even though in principle all the information about the g...

Full description

Bibliographic Details
Main Authors: Farhi, Edward (Contributor), Gosset, David Nicholas (Contributor), Hassidim, Avinatan (Contributor), Lutomirski, Andrew Michael (Contributor), Nagaj, Daniel (Author), Shor, Peter W. (Contributor)
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics (Contributor), Massachusetts Institute of Technology. Department of Mathematics (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor), Shor, Peter (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2011-06-15T14:51:15Z.
Subjects:
Online Access:Get fulltext
LEADER 02496 am a22004093u 4500
001 64438
042 |a dc 
100 1 0 |a Farhi, Edward  |e author 
100 1 0 |a Massachusetts Institute of Technology. Center for Theoretical Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Shor, Peter  |e contributor 
100 1 0 |a Farhi, Edward  |e contributor 
100 1 0 |a Gosset, David Nicholas  |e contributor 
100 1 0 |a Hassidim, Avinatan  |e contributor 
100 1 0 |a Lutomirski, Andrew Michael  |e contributor 
100 1 0 |a Shor, Peter W.  |e contributor 
700 1 0 |a Gosset, David Nicholas  |e author 
700 1 0 |a Hassidim, Avinatan  |e author 
700 1 0 |a Lutomirski, Andrew Michael  |e author 
700 1 0 |a Nagaj, Daniel  |e author 
700 1 0 |a Shor, Peter W.  |e author 
245 0 0 |a Quantum State Restoration and Single-Copy Tomography for Ground States of Hamiltonians 
260 |b American Physical Society,   |c 2011-06-15T14:51:15Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/64438 
520 |a Given a single copy of an unknown quantum state, the no-cloning theorem limits the amount of information that can be extracted from it. Given a gapped Hamiltonian, in most situations it is impractical to compute properties of its ground state, even though in principle all the information about the ground state is encoded in the Hamiltonian. We show in this Letter that if you know the Hamiltonian of a system and have a single copy of its ground state, you can use a quantum computer to efficiently compute its local properties. Specifically, in this scenario, we give efficient algorithms that copy small subsystems of the state and estimate the full statistics of any local measurement. 
520 |a United States. Dept. of Energy (No. DE-FG02-94ER40818) 
520 |a W. M. Keck Foundation Center for Extreme Quantum Information Theory 
520 |a United States. Army Research Office (Grant No. W911NF-09-1-0438) 
520 |a National Science Foundation (U.S.) (Grant No. CCF-0829421) 
520 |a Natural Sciences and Engineering Research Council of Canada 
520 |a Microsoft Research 
520 |a European Union (Project OP CE QUTE ITMS NFP 26240120009) 
520 |a Slovak Research and Development Agency (Contract No. APVV LPP-0430-09) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review Letters