Eddy-Mean Flow interactions in the Along-Stream Development of a Western Boundary Current Jet: An Idealized Model Study

A theoretical study on the role of eddy-mean flow interactions in the time-mean dynamics of a zonally evolving, unstable, strongly inertial jet in a configuration and parameter regime that is relevant to oceanic western boundary current (WBC) jets is described. Progress is made by diagnosing the edd...

Full description

Bibliographic Details
Main Authors: Waterman, Stephanie (Contributor), Jayne, Steven R. (Author)
Other Authors: Joint Program in Oceanography/Applied Ocean Science and Engineering (Contributor), Woods Hole Oceanographic Institution (Contributor)
Format: Article
Language:English
Published: © 2011 American Meteorological Society, 2011-11-09T21:24:20Z.
Subjects:
Online Access:Get fulltext
LEADER 03371 am a22002653u 4500
001 66986
042 |a dc 
100 1 0 |a Waterman, Stephanie  |e author 
100 1 0 |a Joint Program in Oceanography/Applied Ocean Science and Engineering  |e contributor 
100 1 0 |a Woods Hole Oceanographic Institution  |e contributor 
100 1 0 |a Waterman, Stephanie  |e contributor 
100 1 0 |a Waterman, Stephanie  |e contributor 
700 1 0 |a Jayne, Steven R.  |e author 
245 0 0 |a Eddy-Mean Flow interactions in the Along-Stream Development of a Western Boundary Current Jet: An Idealized Model Study 
260 |b © 2011 American Meteorological Society,   |c 2011-11-09T21:24:20Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/66986 
520 |a A theoretical study on the role of eddy-mean flow interactions in the time-mean dynamics of a zonally evolving, unstable, strongly inertial jet in a configuration and parameter regime that is relevant to oceanic western boundary current (WBC) jets is described. Progress is made by diagnosing the eddy effect on the time-mean circulation, examining the mechanism that permits the eddies to drive the time-mean recirculation gyres, and exploring the dependence of the eddy effect on system parameters. It is found that the nature of the eddy-mean flow interactions in this idealized configuration is critically dependent on along-stream position, in particular relative to the along-stream evolving stability properties of the time-mean jet. Just after separation from the western boundary, eddies act to stabilize the jet through downgradient fluxes of potential vorticity (PV). Downstream of where the time-mean jet has (through the effect of the eddies) been stabilized, eddies act to drive the time-mean recirculations through the mechanism of an upgradient PV flux. This upgradient flux is permitted by an eddy enstrophy convergence downstream of jet stabilization, which results from the generation of eddies in the upstream region where the jet is unstable, the advection of that eddy activity along stream by the jet, and the dissipation of the eddies in the region downstream of jet stabilization. It is in this region of eddy decay that eddies drive the time-mean recirculations through the mechanism of nonlinear eddy rectification, resulting from the radiation of waves from a localized region. It is found that similar mechanisms operate in both barotropic and baroclinic configurations, although differences in the background PV gradient on which the eddies act implies that the recirculation-driving mechanism is more effective in the baroclinic case. This study highlights the important roles that eddies play in the idealized WBC jet dynamics considered here of stabilizing the jet and driving the flanking recirculations. In the absence of eddy terms, the magnitude of the upper-ocean jet transport would be significantly less and the abyssal ocean recirculations (and their significant enhancement to the jet transport) would be missing altogether. 
520 |a National Science Foundation (U.S.) (Grant OCE-0825550) 
520 |a National Science Foundation (U.S.) (Grant OCE-0220161) 
520 |a National Science Foundation (U.S.) (Grant OCE-0849808) 
520 |a Henry Houghton Fund 
520 |a Woods Hole Oceanographic Institution 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Physical Oceanography