Photonic density of states of two-dimensional quasicrystalline photonic structures

A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasi...

Full description

Bibliographic Details
Main Authors: Jia, Lin (Contributor), Bita, Ion (Contributor), Thomas, Edwin L. (Contributor)
Other Authors: Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contributor), Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2011-12-02T17:42:19Z.
Subjects:
Online Access:Get fulltext
LEADER 02120 am a22002653u 4500
001 67350
042 |a dc 
100 1 0 |a Jia, Lin  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Thomas, Edwin L.  |e contributor 
100 1 0 |a Jia, Lin  |e contributor 
100 1 0 |a Bita, Ion  |e contributor 
100 1 0 |a Thomas, Edwin L.  |e contributor 
700 1 0 |a Bita, Ion  |e author 
700 1 0 |a Thomas, Edwin L.  |e author 
245 0 0 |a Photonic density of states of two-dimensional quasicrystalline photonic structures 
260 |b American Physical Society,   |c 2011-12-02T17:42:19Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/67350 
520 |a A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasicrystals (QCs), where rotational symmetry, dielectric fill factor, and structural morphology were varied systematically in order to identify correlations between structure and PBG width at a given dielectric contrast (13:1, Si:air). The transverse electric (TE) and transverse magnetic (TM) PBGs of 12 types of QCs are investigated (588 structures). We discovered a 12mm QC with a 56.5% TE PBG, the largest reported TE PBG for an aperiodic crystal to date. We also report here a QC morphology comprising "throwing star"-like dielectric domains, with near-circular air cores and interconnecting veins emanating radially around the core. This interesting morphology leads to a complete PBG of ∼20% , which is the largest reported complete PBG for aperiodic crystals. 
520 |a United States. Army Research Laboratory (Contract No. W911NF-07-D-0004) 
520 |a National Science Foundation (U.S.) (Grant No. DMR-0804449) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review A