A statistical model for multiphoton calcium imaging of the brain

Multiphoton calcium fluorescence imaging has gained prominence as a valuable tool for the study of brain cells, but the corresponding analytical regimes remain rather naive. In this paper, we develop a statistical framework that facilitates principled quantitative analysis of multiphoton images. The...

Full description

Bibliographic Details
Main Authors: Malik, Wasim Qamar (Contributor), Schummers, James (Contributor), Sur, Mriganka (Contributor), Brown, Emery N. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences (Contributor), Picower Institute for Learning and Memory (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2012-03-28T15:24:25Z.
Subjects:
Online Access:Get fulltext
LEADER 01955 am a22002893u 4500
001 69875
042 |a dc 
100 1 0 |a Malik, Wasim Qamar  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences  |e contributor 
100 1 0 |a Picower Institute for Learning and Memory  |e contributor 
100 1 0 |a Brown, Emery N.  |e contributor 
100 1 0 |a Brown, Emery N.  |e contributor 
100 1 0 |a Malik, Wasim Qamar  |e contributor 
100 1 0 |a Schummers, James  |e contributor 
100 1 0 |a Sur, Mriganka  |e contributor 
700 1 0 |a Schummers, James  |e author 
700 1 0 |a Sur, Mriganka  |e author 
700 1 0 |a Brown, Emery N.  |e author 
245 0 0 |a A statistical model for multiphoton calcium imaging of the brain 
260 |b Institute of Electrical and Electronics Engineers,   |c 2012-03-28T15:24:25Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/69875 
520 |a Multiphoton calcium fluorescence imaging has gained prominence as a valuable tool for the study of brain cells, but the corresponding analytical regimes remain rather naive. In this paper, we develop a statistical framework that facilitates principled quantitative analysis of multiphoton images. The proposed methods discriminate the stimulus-evoked response of a neuron from the background firing and image artifacts. We develop a harmonic regression model with colored noise, and estimate the model parameters with computationally efficient algorithms. We apply this model to in vivo characterization of cells from the ferret visual cortex. The results demonstrate substantially improved tuning curve fitting and image contrast. 
520 |a National Institutes of Health (U.S.) (NIH grant DP1 OD003646) 
520 |a National Science Foundation (U.S.) (grant EY07023) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009