The Infinite Latent Events Model

We present the Infinite Latent Events Model, a nonparametric hierarchical Bayesian distribution over infinite dimensional Dynamic Bayesian Networks with binary state representations and noisy-OR-like transitions. The distribution can be used to learn structure in discrete timeseries data by simultan...

Full description

Bibliographic Details
Main Authors: Wingate, David (Contributor), Goodman, Noah D. (Contributor), Roy, Daniel (Contributor), Tenenbaum, Joshua B. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences (Contributor), Massachusetts Institute of Technology. Laboratory for Information and Decision Systems (Contributor)
Format: Article
Language:English
Published: Association for Uncertainty in Artificial Intelligence Press, 2012-06-28T15:56:37Z.
Subjects:
Online Access:Get fulltext
LEADER 02123 am a22003373u 4500
001 71255
042 |a dc 
100 1 0 |a Wingate, David  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Information and Decision Systems  |e contributor 
100 1 0 |a Tenenbaum, Joshua B.  |e contributor 
100 1 0 |a Wingate, David  |e contributor 
100 1 0 |a Goodman, Noah D.  |e contributor 
100 1 0 |a Roy, Daniel  |e contributor 
100 1 0 |a Tenenbaum, Joshua B.  |e contributor 
700 1 0 |a Goodman, Noah D.  |e author 
700 1 0 |a Roy, Daniel  |e author 
700 1 0 |a Tenenbaum, Joshua B.  |e author 
245 0 0 |a The Infinite Latent Events Model 
260 |b Association for Uncertainty in Artificial Intelligence Press,   |c 2012-06-28T15:56:37Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/71255 
520 |a We present the Infinite Latent Events Model, a nonparametric hierarchical Bayesian distribution over infinite dimensional Dynamic Bayesian Networks with binary state representations and noisy-OR-like transitions. The distribution can be used to learn structure in discrete timeseries data by simultaneously inferring a set of latent events, which events fired at each timestep, and how those events are causally linked. We illustrate the model on a sound factorization task, a network topology identification task, and a video game task. 
520 |a NTT Communication Science Laboratories 
520 |a United States. Air Force Office of Scientific Research (AFOSR FA9550-07-1-0075) 
520 |a United States. Office of Naval Research (ONR N00014-07-1-0937) 
520 |a National Science Foundation (U.S.) (Graduate Research Fellowship) 
520 |a United States. Army Research Office (ARO W911NF-08-1-0242) 
520 |a James S. McDonnell Foundation (Causal Learning Collaborative Initiative) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence ( 2009 ) June 18- 21 2009, Montreal, QC, Canada