Majorization Theory Approach to the Gaussian Channel Minimum Entropy Conjecture

A long-standing open problem in quantum information theory is to find the classical capacity of an optical communication link, modeled as a Gaussian bosonic channel. It has been conjectured that this capacity is achieved by a random coding of coherent states using an isotropic Gaussian distribution...

Full description

Bibliographic Details
Main Authors: Garcia-Patron Sanchez, Raul (Contributor), Navarrete-Benlloch, Carlos (Contributor), Lloyd, Seth (Contributor), Shapiro, Jeffrey H. (Contributor), Cerf, Nicolas J. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2012-07-17T12:43:02Z.
Subjects:
Online Access:Get fulltext
LEADER 02357 am a22003853u 4500
001 71640
042 |a dc 
100 1 0 |a Garcia-Patron Sanchez, Raul  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Shapiro, Jeffrey H.  |e contributor 
100 1 0 |a Garcia-Patron Sanchez, Raul  |e contributor 
100 1 0 |a Navarrete-Benlloch, Carlos  |e contributor 
100 1 0 |a Lloyd, Seth  |e contributor 
100 1 0 |a Shapiro, Jeffrey H.  |e contributor 
100 1 0 |a Cerf, Nicolas J.  |e contributor 
700 1 0 |a Navarrete-Benlloch, Carlos  |e author 
700 1 0 |a Lloyd, Seth  |e author 
700 1 0 |a Shapiro, Jeffrey H.  |e author 
700 1 0 |a Cerf, Nicolas J.  |e author 
245 0 0 |a Majorization Theory Approach to the Gaussian Channel Minimum Entropy Conjecture 
260 |b American Physical Society,   |c 2012-07-17T12:43:02Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/71640 
520 |a A long-standing open problem in quantum information theory is to find the classical capacity of an optical communication link, modeled as a Gaussian bosonic channel. It has been conjectured that this capacity is achieved by a random coding of coherent states using an isotropic Gaussian distribution in phase space. We show that proving a Gaussian minimum entropy conjecture for a quantum-limited amplifier is actually sufficient to confirm this capacity conjecture, and we provide a strong argument towards this proof by exploiting a connection between quantum entanglement and majorization theory. 
520 |a Alexander von Humboldt-Stiftung 
520 |a Belgian National Foundation for Scientific Research 
520 |a European Union (Project No. FIS2008-06024-C03-01) 
520 |a W. M. Keck Foundation Center for Extreme Quantum Information Theory 
520 |a Spain. Ministerio de Ciencia e Innovación (MICINN) (FPU) 
520 |a United States. Office of Naval Research (Basic Research Challenge Program) 
520 |a Fondation pour la recherche strategique (France) (HIPERCOM) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review Letters