Quantum bit commitment under Gaussian constraints

Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is...

Full description

Bibliographic Details
Main Authors: Cerf, Nicolas J. (Contributor), Mandilara, Aikaterini (Author)
Other Authors: W. M. Keck Foundation Center for Extreme Quantum Information Theory (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2012-10-01T16:44:58Z.
Subjects:
Online Access:Get fulltext
LEADER 01242 am a22001933u 4500
001 73515
042 |a dc 
100 1 0 |a Cerf, Nicolas J.  |e author 
100 1 0 |a W. M. Keck Foundation Center for Extreme Quantum Information Theory  |e contributor 
100 1 0 |a Cerf, Nicolas J.  |e contributor 
100 1 0 |a Cerf, Nicolas J.  |e contributor 
700 1 0 |a Mandilara, Aikaterini  |e author 
245 0 0 |a Quantum bit commitment under Gaussian constraints 
260 |b American Physical Society,   |c 2012-10-01T16:44:58Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/73515 
520 |a Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible. 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review A